Protein-protein interactions (PPIs) are central to most biological processes. Although efforts have been devoted to the development of methodology for predicting PPIs and protein interaction networks, the application of most existing methods is limited because they need information about protein homology or the interaction marks of the protein partners. In the present work, we propose a method for PPI prediction using only the information of protein sequences. This method was developed based on a learning algorithm-support vector machine combined with a kernel function and a conjoint triad feature for describing amino acids. More than 16,000 diverse PPI pairs were used to construct the universal model. The prediction ability of our approach is better than that of other sequence-based PPI prediction methods because it is able to predict PPI networks. Different types of PPI networks have been effectively mapped with our method, suggesting that, even with only sequence information, this method could be applied to the exploration of networks for any newly discovered protein with unknown biological relativity. In addition, such supplementary experimental information can enhance the prediction ability of the method.conjoint triad ͉ support vector machine T he molecular bases of cellular operations are sustained largely by different types of interactions among proteins. Thus, a major goal of functional genomics is to determine protein interaction networks for whole organisms (1). However, only recently has it become possible to combine the traditional study of proteins as isolated entities with the analysis of large protein interaction networks by using microarray and proteomic approaches (2, 3). Such kinds of studies are significantly important because many of the functions of complex systems seem to be more closely determined by their interactions rather than by the characteristics of their individual components (4). For example, metabolic pathways, signaling cascades, and transcription control processes involve complicated interaction networks (5). Recently, interaction networks have begun to be appreciated because it is necessary to address the general principles of biological systems by means of systems biology (6). Moreover, the study of protein interaction networks has been driven by potentially practical applications in drug discovery, because it might provide great insights into mechanisms of human diseases. This study may revolutionize the pipeline of drug discovery, because drugs discovered based on the protein interaction network may specifically modulate the disease-related pathway rather than simply inhibit or activate the functions of an individual target protein (7,8). Determining accurate cellular protein interaction networks with experimental methods in combination with computational approaches therefore has become a major theme of functional genomics and proteomics efforts (9).An impressive set of experimental techniques has been developed for the systematic analysis of protein-protein interactions (...
Hunting for chemicals with favorable pharmacological, toxicological, and pharmacokinetic properties remains a formidable challenge for drug discovery. Deep learning provides us with powerful tools to build predictive models that are appropriate for the rising amounts of data, but the gap between what these neural networks learn and what human beings can comprehend is growing. Moreover, this gap may induce distrust and restrict deep learning applications in practice. Here, we introduce a new graph neural network architecture called Attentive FP for molecular representation that uses a graph attention mechanism to learn from relevant drug discovery data sets. We demonstrate that Attentive FP achieves state-of-the-art predictive performances on a variety of data sets and that what it learns is interpretable. The feature visualization for Attentive FP suggests that it automatically learns nonlocal intramolecular interactions from specified tasks, which can help us gain chemical insights directly from data beyond human perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.