With the development of science and technology, modern communication scenarios have put forward higher requirements for passive location technology. However, current location systems still use manual scheduling methods and cannot meet the current mission-intensive and widely-distributed scenarios, resulting in inefficient task completion. To address this issue, this paper proposes a method called multi-objective, multi-constraint and improved genetic algorithm-based scheduling (MMIGAS), contributing a centralized combinatorial optimization model with multiple objectives and multiple constraints and conceiving an improved genetic algorithm. First, we establish a basic mathematical framework based on the structure of a passive location system. Furthermore, to balance performance with respect to multiple measures and avoid low efficiency, we propose a multi-objective optimal function including location accuracy, completion rate and resource utilization. Moreover, to enhance its practicability, we formulate multiple constraints for frequency, resource capability and task cooperation. For model solving, we propose an improved genetic algorithm with better convergence speed and global optimization ability, by introducing constraint-proof initialization, a penalty function and a modified genetic operator. Simulations indicate the good astringency, steady time complexity and satisfactory location accuracy of MMIGAS. Moreover, compared with manual scheduling, MMIGAS can improve the efficiency while maintaining high location precision.
Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previous algorithms, we innovatively combine network depth and node number and optimizes them simultaneously. First, the mathematical model of the structural design problem is established, and the boundary constraint for node number based on information entropy is derived by introducing the idea of information compression. Moreover, the optimization objective of the network performance based on reconstruction error is proposed by deriving the fact that network energy is proportional to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust the DBN network layers and nodes simultaneously. Experiments were carried out on three public datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction error and prediction error rate. The proposed algorithm is shown to have the best performance compared with other algorithms and can be used to assist the setting of DBN structural parameters for different datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.