Vesicular transport involving soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins is known to be responsible for many major cellular activities. In steroidogenic tissues, chronic hormone stimulation results in increased expression of proteins involved in the steroidogenic pathway, whereas acute hormone stimulation prompts the rapid transfer of cholesterol to the inner mitochondrial membrane to be utilized as substrate for steroid hormone production. Several different pathways are involved in supplying cholesterol to mitochondria, but mobilization of stored cholesteryl esters appears to initially constitute the preferred source; however, the mechanisms mediating this cholesterol transfer are not fully understood. To study the potential contribution of SNARE proteins in steroidogenesis, we examined the expression levels of various SNARE proteins in response to hormone stimulation in steroidogenic tissues and cells and established an in vitro mitochondria reconstitution assay system to assess the contribution of various SNARE proteins on cholesterol delivery for steroidogenesis. Our results from reconstitution experiments along with knockdown studies in rat primary granulosa cells and in a Leydig cell line show that soluble N-ethylmaleimide sensitive factor attachment protein-α, synaptosomal-associated protein of 25 kDa, syntaxin-5, and syntaxin-17 facilitate the transport of cholesterol to mitochondria. Thus, although StAR is required for efficient cholesterol movement into mitochondria for steroidogenesis, specific SNAREs participate and are necessary to mediate cholesterol movement to mitochondria.
Milk fat is the major energy component of milk, and regulation of its production relies on transcription factors sterol regulatory element-binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPARγ). As one of the target genes of SREBP1 and PPARγ, fatty acid-binding protein 3(FABP3) is the main protein allowing for rapid diffusion and selective targeting of long-chain fatty acids toward specific organelles for metabolism. Whether FABP3 plays an important role in milk fat synthesis signaling pathway is largely unknown. In this study, we observed the effects of FABP3 overexpression and gene silencing in dairy cow mammary epithelial cells, as well as the effects of oleic acid, stearic acid, and palmitic acid on the expressions of FABP3 and lipid droplet formation, by using quantitative reverse transcriptase (qRT)-PCR, Western blotting, and fluorescent immunostaining techniques. FABP3 upregulated the expression of SREBP1 and PPARγ to increase lipid droplet accumulation. Oleic acid, stearic acid, and palmitic acid also increased lipid droplet accumulation by affecting expression of FABP3. These findings shed new insights for understanding the mechanism of FABP3 in regulating milk fat synthesis.
BackgroundLactose, as the primary osmotic component in milk, is the major determinant of milk volume. Glucose is the primary precursor of lactose. However, the effect of glucose on lactose synthesis in dairy cow mammary glands and the mechanism governing this process are poorly understood.ResultsHere we showed that glucose has the ability to induce lactose synthesis in dairy cow mammary epithelial cells, as well as increase cell viability and proliferation. A concentration of 12 mM glucose was the optimum concentration to induce cell growth and lactose synthesis in cultured dairy cow mammary epithelial cells. In vitro, 12 mM glucose enhanced lactose content, along with the expression of genes involved in glucose transportation and the lactose biosynthesis pathway, including GLUT1, SLC35A2, SLC35B1, HK2, β4GalT-I, and AKT1. In addition, we found that AKT1 knockdown inhibited cell growth and lactose synthesis as well as expression of GLUT1, SLC35A2, SLC35B1, HK2, and β4GalT-I.ConclusionsGlucose induces cell growth and lactose synthesis in dairy cow mammary epithelial cells. Protein kinase B alpha acts as a regulator of metabolism in dairy cow mammary gland to mediate the effects of glucose on lactose synthesis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-016-0704-x) contains supplementary material, which is available to authorized users.
The mammary gland requires the uptake of AA for milk protein synthesis during lactation. The L-type amino acid transporter 1 (LAT1, encoded by SLC7A5), found in many different types of mammalian cells, is indispensable as a transporter of essential AA to maintain cell growth and protein synthesis. However, the function of LAT1 in regulating milk protein synthesis in the mammary gland of the dairy cow remains largely unknown. For the current study, we characterized the relationship between LAT1 expression and milk protein synthesis in lactating dairy cows and investigated whether the mammalian target of rapamycin complex 1 (mTORC1) signaling controls the expression of LAT1 in their mammary glands. We found that LAT1 and the heavy chain of its chaperone, 4F2, were expressed in mammary tissues of lactating cows, with the expression levels of LAT1 and the 4F2 heavy chain being significantly greater in lactating mammary tissues with high-milk protein content (milk yield, 33.8 ± 2.1 kg/d; milk protein concentration >3%, wt/vol,; n = 3) than in tissues from cows with low-milk protein content (milk yield, 33.7 ± 0.5 kg/d; milk protein concentration <3%, wt/vol; n = 3). Immunofluorescence staining of sectioned mammary tissues from cows with high and low milk protein content showed that LAT1 was located on the whole plasma membrane of alveolar epithelial cells, suggesting that LAT1 provides essential AA to the mammary gland. In cultured mammary epithelial cells from the dairy cows with high-milk protein content, knockdown of LAT1 expression decreased cell viability and β-casein expression; in contrast, overexpression of LAT1 had the opposite effect. Inhibition of mTORC1 by rapamycin attenuated the phosphorylation of molecules related to mTORC1 signaling and caused a marked decrease in LAT1 expression in the cultured cells; expression of β-casein also decreased significantly. These results suggest that LAT1 is involved in milk protein synthesis in the mammary glands of lactating dairy cows and that the mTORC1 signaling pathway might be a control point for regulation of LAT1 expression, which could ultimately be used to alter milk protein synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.