Data-driven methods have shown promising results in structural health monitoring (SHM) applications. However, most of these approaches rely on the ideal dataset assumption and do not account for missing data, which can significantly impact their real-world performance. Missing data is a frequently encountered issue in time series data, which hinders standardized data mining and downstream tasks such as damage identification and condition assessment. While imputation approaches based on spatiotemporal relations among monitoring data have been proposed to handle this issue, they do not provide additional helpful information for downstream tasks. This paper proposes a robust deep learning-based method that unifies missing data imputation and damage identification tasks into a single framework. The proposed approach is based on a long short-term memory (LSTM) structured autoencoder (AE) framework, and missing data is simulated using the dropout mechanism by randomly dropping the input channels. Reconstruction errors serve as the loss function and damage indicator. The proposed method is validated using the quasi-static response (cable tension) of a cable-stayed bridge released in the 1st IPC-SHM, and results show that missing data imputation and damage identification can be effectively integrated into the proposed unified framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.