The double perovskite family, A M M X , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH NH PbI . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs AgBiBr as host, band-gap engineering through alloying of In /Sb has been demonstrated in the current work. Cs Ag(Bi M )Br (M=In, Sb) accommodates up to 75 % In with increased band gap, and up to 37.5 % Sb with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs Ag(Bi Sb )Br . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed.
The influence of crystallite size on the adsorption reactivity of phosphate on 2-line to 6-line ferrihydrites was investigated by combining adsorption experiments, structure and surface analysis, and spectroscopic analysis. X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that the ferrihydrite samples possessed a similar fundamental structure with a crystallite size varying from 1.6 to 4.4 nm. N2 adsorption on freeze-dried samples revealed that the specific surface area (SSABET) decreased from 427 to 234 m(2) g(-1) with increasing crystallite size and micropore volume (Vmicro) from 0.137 to 0.079 cm(3) g(-1). Proton adsorption (QH) at pH 4.5 and 0.01 M KCl ranged from 0.73 to 0.55 mmol g(-1). Phosphate adsorption capacity at pH 4.5 and 0.01 M KCl for the ferrihydrites decreased from 1690 to 980 μmol g(-1) as crystallite size increased, while the adsorption density normalized to SSABET was similar. Phosphate adsorption on the ferrihydrites exhibited similar behavior with respect to both kinetics and the adsorption mechanism. The kinetics could be divided into three successive first-order stages: relatively fast adsorption, slow adsorption, and a very slow stage. With decreasing crystallite size, ferrihydrites exhibited increasing rate constants per mass for all stages. Analysis of OH(-) release and attenuated total reflectance infrared spectroscopy (ATR-IR) and differential pair distribution function (d-PDF) results indicated that initially phosphate preferentially bound to two Fe-OH2(1/2+) groups to form a binuclear bidentate surface complex without OH(-) release, with smaller size ferrihydrites exchanging more Fe-OH2(1/2+) per mass. Subsequently, phosphate exchanged with both Fe-OH2(1/2+) and Fe-OH(1/2-) with a constant amount of OH(-) released per phosphate adsorbed. Also in this stage binuclear bidentate surface complexes were formed with a P-Fe atomic pair distance of ~3.25 Å.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.