Carbon nanotubes (CNTs) are of great interest for many potential applications because of their extraordinary electronic, mechanical and structural properties. However, issues of chaotic staking, high cost and high energy dissipation in the synthesis of CNTs remain to be resolved. Here we develop a facile, general and high-yield strategy for the oriented formation of CNTs from metal-organic frameworks (MOFs) through a low-temperature (as low as 430 °C) pyrolysis process. The selected MOF crystals act as a single precursor for both nanocatalysts and carbon sources. The key to the formation of CNTs is obtaining small nanocatalysts with high activity during the pyrolysis process. This method is successfully extended to obtain various oriented CNT-assembled architectures by modulating the corresponding MOFs, which further homogeneously incorporate heteroatoms into the CNTs. Specifically, nitrogen-doped CNT-assembled hollow structures exhibit excellent performances in both energy conversion and storage. On the basis of experimental analyses and density functional theory simulations, these superior performances are attributed to synergistic effects between ideal components and multilevel structures. Additionally, the appropriate graphitic N doping and the confined metal nanoparticles in CNTs both increase the densities of states near the Fermi level and reduce the work function, hence efficiently enhancing its oxygen reduction activity. The viable synthetic strategy and proposed mechanism will stimulate the rapid development of CNTs in frontier fields.
K-ion battery (KIB) is a new-type energy storage device that possesses potential advantages of low-cost and abundant resource of K precursor materials. However, the main challenge lies on the lack of stable materials to accommodate the intercalation of large-size K-ions. Here we designed and constructed a novel earth abundant Fe/Mn-based layered oxide interconnected nanowires as a cathode in KIBs for the first time, which exhibits both high capacity and good cycling stability. On the basis of advanced in situ X-ray diffraction analysis and electrochemical characterization, we confirm that interconnected KFeMnO nanowires can provide stable framework structure, fast K-ion diffusion channels, and three-dimensional electron transport network during the depotassiation/potassiation processes. As a result, a considerable initial discharge capacity of 178 mAh g is achieved when measured for KIBs. Besides, K-ion full batteries based on interconnected KFeMnO nanowires/soft carbon are assembled, manifesting over 250 cycles with a capacity retention of ∼76%. This work may open up the investigation of high-performance K-ion intercalated earth abundant layered cathodes and will push the development of energy storage systems.
The emerging electrochemical energy storage systems beyond Li‐ion batteries, including Na/K/Mg/Ca/Zn/Al‐ion batteries, attract extensive interest as the development of Li‐ion batteries is seriously hindered by the scarce lithium resources. During the past years, large amounts of studies have focused on the investigation of various electrode materials toward emerging metal‐ion batteries to realize high energy density, high power density, and a long cycle life. In particular, vanadium‐based nanomaterials have received great attention. Vanadium‐based compounds have a big family with different structures, chemical compositions, and electrochemical properties, which provide huge possibilities for the development of emerging electrochemical energy storage. In this review, a comprehensive overview of the recent progresses of promising vanadium‐based nanomaterials for emerging metal‐ion batteries is presented. The vanadium‐based materials are classified into four groups: vanadium oxides, vanadates, vanadium phosphates, and oxygen‐free vanadium‐based compounds. The structures, electrochemical properties, and modification strategies are discussed. The structure–performance relationships and charge storage mechanisms are focused on. Finally, the perspectives about future directions of vanadium‐based nanomaterials for emerging energy storage devices are proposed. This review will provide comprehensive knowledge of vanadium‐based nanomaterials and shed light on their potential applications in emerging energy storage.
Nanowires and nanotubes have been the focus of considerable efforts in energy storage and solar energy conversion because of their unique properties. However, owing to the limitations of synthetic methods, most inorganic nanotubes, especially for multi-element oxides and binary-metal oxides, have been rarely fabricated. Here we design a gradient electrospinning and controlled pyrolysis method to synthesize various controllable 1D nanostructures, including mesoporous nanotubes, pea-like nanotubes and continuous nanowires. The key point of this method is the gradient distribution of low-/middle-/high-molecular-weight poly(vinyl alcohol) during the electrospinning process. This simple technique is extended to various inorganic multi-element oxides, binary-metal oxides and single-metal oxides. Among them, Li3V2(PO4)3, Na0.7Fe0.7Mn0.3O2 and Co3O4 mesoporous nanotubes exhibit ultrastable electrochemical performance when used in lithium-ion batteries, sodium-ion batteries and supercapacitors, respectively. We believe that a wide range of new materials available from our composition gradient electrospinning and pyrolysis methodology may lead to further developments in research on 1D systems.
Intercalation of ions in electrode materials has been explored to improve the rate capability in lithium batteries and supercapacitors, due to the enhanced diffusion of Li(+) or electrolyte cations. Here, we describe a synergistic effect between crystal structure and intercalated ion by experimental characterization and ab initio calculations, based on more than 20 nanomaterials: five typical cathode materials together with their alkali metal ion intercalation compounds A-M-O (A = Li, Na, K, Rb; M = V, Mo, Co, Mn, Fe-P). Our focus on nanowires is motivated by general enhancements afforded by nanoscale structures that better sustain lattice distortions associated with charge/discharge cycles. We show that preintercalation of alkali metal ions in V-O and Mo-O yields substantial improvement in the Li ion charge/discharge cycling and rate, compared to A-Co-O, A-Mn-O, and A-Fe-P-O. Diffraction and modeling studies reveal that preintercalation with K and Rb ions yields a more stable interlayer expansion, which prevents destructive collapse of layers and allow Li ions to diffuse more freely. This study demonstrates that appropriate alkali metal ion intercalation in admissible structure can overcome the limitation of cyclability as well as rate capability of cathode materials, besides, the preintercalation strategy provides an effective method to enlarge diffusion channel at the technical level, and more generally, it suggests that the optimized design of stable intercalation compounds could lead to substantial improvements for applications in energy storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.