Magnetic skyrmions are topologically protected vortex-like nanometric spin textures that have recently received growingly attention for their potential applications in future highperformance spintronic devices. Such unique mangetic naondomains have been recently discovered in bulk chiral magnetic materials, such as MnSi [1][2][3][4] , FeGe [5,6] , FeCoSi [7] , Cu 2 OSeO 3 [8][9][10] , -Mn-type Co-Zn-Mn [11] , and also GaV 4 S 8[12] a polar magnet. The crystal structure of these materials is cubic and lack of centrosymmetry, leading to the existence of Dzyaloshinskii-Moriya (DM) interactions. Unlike the conventional spin configurations, such as helical or conical, that are usually found in chiral magnets, a magnetic skyrmion has a particle-like swirling-spin configuration characterized by a topological index called the skyrmion number [13,14] . The nontrivial topology of magnetic skyrmions results in a number of
Humic acid (HA) was extracted by a hydrothermal method from Huolinhe lignite from Inner Mongolia. The effects of the alkali-to-carbon mass ratio, water-to-coal mass ratio, reaction temperature, and reaction time on the HA yield were investigated. The physicochemical characterization of the products was performed, and the reaction mechanism was explored. Raw coal, HA, and residual coal were characterized using Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–VIS), elemental composition, and X-ray diffraction (XRD) analyses and compared to each other. The maximum HA yield (90.2%) was obtained from the 0.250–0.180 mm size fraction of the coal sample at a reaction temperature and time of 190 °C and 7 h. Proximate analysis proved that the ash and sulfur of lignite can be removed by hydrothermal treatment. Elemental analysis showed that the O/C and H/C ratios were highest for HA, followed by those for residual coal and raw coal, indicating an increase in the oxygen and hydrogen content of HA. FTIR and UV–VIS analyses showed that hydrothermal extraction destroyed the macromolecular structure of lignite. Moreover, the organics were degraded and hydrolyzed during the reaction process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.