The intracellular and extracellular dynamics that govern tumor growth and invasiveness in vivo remain poorly understood. Cell genotype and phenotype, and nutrient, oxygen, and growth factor concentrations are key variables. In previous work, using a reaction-diffusion mathematical model based on variables that directly describe tumor cell cycle and biology, we formulated the hypothesis that tumor morphology is determined by the competition between heterogeneous cell proliferation caused by spatial diffusion gradients, e.g., of cell nutrients, driving shape instability and invasive tumor morphologies, and stabilizing mechanical forces, e.g., cell-to-cell and cell-to-matrix adhesion. To test this hypothesis, we here obtain variable-based statistics for input to the mathematical model from in vitro human and rat glioblastoma cultures. A linear stability analysis of the model predicts that glioma spheroid morphology is marginally stable. In agreement with this prediction, for a range of variable values, unbounded growth of the tumor mass and invasion of the environment are observed in vitro. The mechanism of invasion is recursive subspheroid component development at the tumor viable rim and separation from the parent spheroid. Results of computer simulations of the mathematical model closely resemble the morphologies and spatial arrangement of tumor cells from the in vitro model. We propose that tumor morphogenesis in vivo may be a function of marginally stable environmental conditions caused by spatial variations in cell nutrients, oxygen, and growth factors, and that controlling these conditions by decreasing spatial gradients could benefit treatment outcomes, whereas current treatment, and especially antiangiogenic therapy, may trigger spatial heterogeneity (e.g., local hypoxia), thus causing invasive instability. (Cancer Res 2006; 66(3): 1597-604)
We present a multi-scale computer simulator of cancer progression at the tumoral level, from avascular stage growth, through the transition from avascular to vascular growth (neo-vascularization), and into the later stages of growth and invasion of normal tissue. We use continuum scale reaction-diffusion equations for the growth component of the model, and a combined continuum-discrete model for the angiogenesis component. We use the level set method for describing complex topological changes observed during growth such as tumor splitting and reconnection, and capture of healthy tissue inside the tumor. We use an adaptive, unstructured finite element mesh that allows for finely resolving important regions of the computational domain such as the necrotic rim, the tumor interface and around the capillary sprouts. We present full nonlinear, two-dimensional simulations, showing the potential of our virtual cancer simulator. We use microphysical parameters characterizing malignant glioma cells, obtained from recent in vitro experiments from our lab and from clinical data, and provide insight into the mechanisms leading to infiltration of the brain by the cancer cells. The results indicate that diffusional instability of tumor mass growth and the complex interplay with the developing neo-vasculature may be powerful mechanisms for tissue invasion.
Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.
Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically assess advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we review a multiscale, i.e., from the molecular to the gross tumor scale, mathematical and computational "first-principle" approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as a phenotype-diagnostic tool to predict collective and individual tumor cell invasion of surrounding tissue. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.