Objective: Axillary lymph node (ALN) metastasis status is important in guiding treatment in breast cancer. The aims were to assess how deep convolutional neural network (CNN) performed compared with radiomics analysis in predicting ALN metastasis using breast ultrasound, and to investigate the value of both intratumoral and peritumoral regions in ALN metastasis prediction.
Methods:We retrospectively enrolled 479 breast cancer patients with 2,395 breast ultrasound images. Based on the intratumoral, peritumoral, and combined intra-and peritumoral regions, three CNNs were built using DenseNet, and three radiomics models were built using random forest, respectively. By combining the molecular subtype, another three CNNs and three radiomics models were built. All models were built on training cohort (343 patients 1,715 images) and evaluated on testing cohort (136 patients 680 images) with ROC analysis. Another prospective cohort of 16 patients was enrolled to further test the models.Results: AUCs of image-only CNNs in both training/testing cohorts were 0.957/0.912 for combined region, 0.944/0.775 for peritumoral region, and 0.937/0.748 for intratumoral region, which were numerically higher than their corresponding radiomics models with AUCs of 0.940/0.886, 0.920/0.724, and 0.913/0.693. The overall performance of image-molecular CNNs in terms of AUCs on training/testing cohorts slightly increased to 0.962/0.933, 0.951/0.813, and 0.931/0.794, respectively. AUCs of both CNNs and radiomics models built on combined region were significantly better than those on either intratumoral or peritumoral region on the testing cohort (p < 0.05). In the prospective study, the CNN model built on combined region achieved the highest AUC of 0.95 among all image-only models. Sun et al.
Ultrasound-CNN Predicted Breast Cancer MetastasisConclusions: CNNs showed numerically better overall performance compared with radiomics models in predicting ALN metastasis in breast cancer. For both CNNs and radiomics models, combining intratumoral, and peritumoral regions achieved significantly better performance.
Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.