Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. Methods: In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multidimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection. Results: Experiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medi-Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.