Nanotubes of quasilayered bismuth telluride compound were prepared by hydrothermal synthesis. Nanotubes have diameters smaller than 100 nm and spiral tube-walls. The low-dimensional morphology and hollow structure enable bismuth telluride nanotubes to be a potential thermoelectric material with a high figure of merit due to the efficient phonon blocking effect. The experimental results show that the addition of nanotubes leads to a remarkable decrease in the thermal conductivity with the electrical conductivity much less affected and thus to an increase in the figure of merit of the Bi 2 Te 3-based material.
Over a decade ago, Dresselhaus predicted that low-dimensional systems would one day serve as a route to enhanced thermoelectric performance.In this article, recent results in the thermoelectric properties of nanowires and nanotubes are discussed. Various synthesis techniques will be presented, including chemical vapor deposition for the growth of thermoelectric nanostructures in templated alumina.Electrical transport measurements of carbon nanostructures, such as resistivity and thermopower, have revealed some very interesting thermoelectric properties.Challenges still remain concerning the measurement of individual nanostructures such as nanowires.Much work has been performed on the thermoelectric properties of carbon nanotubes, and these results will be highlighted.In addition, routes for enhanced thermoelectric materials have focused on incorporating nanostructures within the bulk materials.The role of these “hybrid composite structures” based on nanomaterials incorporated into the bulk matrix and the potential for enhanced performance are discussed.
A hydrothermal nanoparticle-plating technique has been employed in order to grow a layer of CoSb3 nanoparticles on the surface of La0.9CoFe3Sb12 bulk matrix grains. The nanoparticles have a typical size of 30–40 nm while the nano-layer can be up to several hundreds of nanometer thick. The nanoparticle layer, which resides at the grain boundary after hotpressing, provides an extra scattering channel for phonons, in addition to the “rattler” atoms (La), grain boundary scattering, and mass fluctuation mechanisms found within the bulk matrix grain. The electrical resistivity, thermopower, thermal conductivity, and Hall coefficient have been investigated as a function of temperature and the weight percentage (%) of nanoparticles. Largely due to the reduced lattice thermal conductivity, a ZT value of ∼0.5 is attained at 725 K on the sample with 5 wt % of nanoparticles showing a 15% improvement of the ZT from that of the sample without nanoparticles and comparable to the best value reported at this temperature.
We describe the construction of a very important forcing dataset of average daily surface climate over East Asia—the China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool model (CMADS). This dataset can either drive the SWAT model or other hydrologic models, such as the Variable Infiltration Capacity model (VIC), the Soil and Water Integrated Model (SWIM), etc. It contains several climatological elements—daily maximum temperature (°C), daily average temperature (°C), daily minimum temperature (°C), daily average relative humidity (%), daily average specific humidity (g/kg), daily average wind speed (m/s), daily 24 h cumulative precipitation (mm), daily mean surface pressure (HPa), daily average solar radiation (MJ/m2), soil temperature (K), and soil moisture (mm3/mm3). In order to suit the various resolutions required for research, four versions of the CMADS datasets were created—from CMADS V1.0 to CMADS V1.3. We have validated the source data of the CMADS datasets using 2421 automatic meteorological stations in China to confirm the accuracy of this dataset. We have also formatted the dataset so as to drive the SWAT model conveniently. This dataset may have applications in hydrological modelling, agriculture, coupled hydrological and meteorological modelling, and meteorological analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.