Introduction: Severe acute respiratory viral infections are frequency accompanied by multiple organ dysfunction, including acute kidney injury (AKI). In December 2019, the coronavirus disease 2019 (COVID-19) outbreak began in Wuhan, Hubei Province, China, and rapidly spread worldwide. While diffuse alveolar damage and acute respiratory failure are the main features of COVID-19, other organs may be involved, and the incidence of AKI is not well described. We assessed the incidence and clinical characteristics of AKI in patients with laboratory-confirmed COVID-19 and its effects on clinical outcomes. Methods: We conducted a multicenter, retrospective, observational study of patients with COVID-19 admitted to two general hospitals in Wuhan from 5 January 2020 to 21 March 2020. Demographic data and information on organ dysfunction were collected daily. AKI was defined according to the KDIGO clinical practice guidelines. Early and late AKI were defined as AKI occurring within 72 h after admission or after 72 h, respectively. Results: Of the 116 patients, AKI developed in 21 (18.1%) patients. Among them, early and late AKI were found in 13 (11.2%) and 8 (6.9%) patients, respectively. Compared with patients without AKI, patients with AKI had more severe organ dysfunction, as indicated by a higher level of disease severity status, higher sequential organ failure assessment (SOFA) score on admission, an increased prevalence of shock, and a higher level of respiratory support. Patients with AKI had a higher SOFA score on admission (4.5 ± 2.1 vs. 2.8
Inspired by biological systems, self‐healing coatings have been fabricated to protect metals against corrosion. However, in situ monitoring of the corrosion dynamics for various self‐healing strategies generally remains a big challenge due to different working mechanisms. In the present work, a universal intelligent‐sensing coating (SC) system containing pH‐responsive polymer microspheres with a color probe is developed. When corrosion occurs in the self‐healing system, the color around cracks turns pink gradually over time owing to the increased pH value. For the high‐performance self‐healing coatings, the onset and propagation of corrosion is suppressed, thereby leading to a narrow light‐pink‐color area. With this smart SC approach, the corrosion dynamics is established for three self‐healing strategies by the correlation between the width of color lines with time. The anticorrosion ability in 48 h for the three extrinsic self‐healing strategies are evaluated; that is, the SC with benzotriazole‐loaded poly(divinylbenzene)‐graft‐poly(divinylbenzene‐co‐acrylic acid) microspheres (PDVB‐graft‐P(DVB‐co‐AA)‐BTA) is superior to that with BTA‐loaded halloysite (Halloysite‐BTA), which surpasses that with polyurethane/poly(urea‐formaldehyde) microcapsules filled with isophorone diisocyanate (IPDI@PU/PUF). These results are consistent with electrochemical experiments. This smart‐sensing coating system can be a promising alternative for the in situ investigation of the anticorrosion performance of various self‐healing anticorrosion strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.