Negative refraction of elastic waves has been studied and experimentally demonstrated in three-and two-dimensional phononic crystals, but Bragg scattering is impractical for low-frequency wave control because of the need to scale the structures to manageable sizes. Here we present an elastic metamaterial with chiral microstructure made of a single-phase solid material that aims to achieve subwavelength negative refraction of elastic waves. Both negative effective mass density and modulus are observed owing to simultaneous translational and rotational resonances. We experimentally demonstrate negative refraction of the longitudinal elastic wave at the deep-subwavelength scale in the metamaterial fabricated in a stainless steel plate. The experimental measurements are in good agreement with numerical simulations. Moreover, wave mode conversion related with negative refraction is revealed and discussed. The proposed elastic metamaterial may thus be used as a flat lens for elastic wave focusing.
In this letter, an elastic metamaterial which exhibits simultaneously negative effective mass density and bulk modulus is presented with a single unit structure made of solid materials. The double-negative properties are achieved through a chiral microstructure that is capable of producing simultaneous translational and rotational resonances. The negative effective mass density and effective bulk modulus are numerically determined and confirmed by the analysis of wave propagation. The left-handed wave propagation property of this metamaterial is demonstrated by the negative refraction of acoustic waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.