Quantile regression is a powerful tool for learning the relationship between a response variable and a multivariate predictor while exploring heterogeneous effects. This paper focuses on statistical inference for quantile regression in the ''increasing dimension" regime. We provide a comprehensive analysis of a convolution smoothed approach that achieves adequate approximation to computation and inference for quantile regression. This method, which we refer to as conquer, turns the non-differentiable check function into a twice-differentiable, convex and locally strongly convex surrogate, which admits fast and scalable gradient-based algorithms to perform optimization, and multiplier bootstrap for statistical inference. Theoretically, we establish explicit non-asymptotic bounds on estimation and Bahadur-Kiefer linearization errors, from which we show that the asymptotic normality of the conquer estimator holds under a weaker requirement on dimensionality than needed for conventional quantile regression. The validity of multiplier bootstrap is also provided. Numerical studies confirm conquer as a practical and reliable approach to large-scale inference for quantile regression. Software implementing the methodology is available in the R package conquer.
This paper establishes non-asymptotic concentration bound and Bahadur representation for the quantile regression estimator and its multiplier bootstrap counterpart in the random design setting. The non-asymptotic analysis keeps track of the impact of the parameter dimension $d$ and sample size $n$ in the rate of convergence, as well as in normal and bootstrap approximation errors. These results represent a useful complement to the asymptotic results under fixed design and provide theoretical guarantees for the validity of Rademacher multiplier bootstrap in the problems of confidence construction and goodness-of-fit testing. Numerical studies lend strong support to our theory and highlight the effectiveness of Rademacher bootstrap in terms of accuracy, reliability and computational efficiency.
Quantile regression is a powerful tool for learning the relationship between a scalar response and a multivariate predictor in the presence of heavier tails and/or data heterogeneity. In the present paper, we consider statistical inference for quantile regression with large-scale data in the "increasing dimension" regime. We provide a comprehensive study of a convolution-type smoothing approach to achieving an adequate approximation to computation and inference for quantile regression. The ensuing estimator, which we refer to as conquer, turns the non-differentiable quantile loss function into a twice-differentiable, globally convex, and locally strongly convex surrogate, which admits a fast and scalable Barzilai-Borwein gradient-based algorithm to perform optimization, and a Rademacher multiplier bootstrap method for statistical inference. In the theoretical investigations of the conquer estimator, we establish nonasymptotic error bounds on the Bahadur-Kiefer linearization, from which we show that the asymptotic normality of the smoothed quantile regression estimator holds under a weaker requirement on the dimension of the predictors than needed for the exact quantile regression estimator. Our numerical studies confirm the conquer estimator as a practical and reliable approach to large-scale inference for quantile regression.
Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in highdimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-differentiable piecewise linear loss function. To overcome the lack of smoothness, a recently proposed convolution-type smoothed method brings an interesting tradeoff between statistical accuracy and computational efficiency for both standard and penalized quantile regressions. In this paper, we propose a unified algorithm for fitting penalized convolution smoothed quantile regression with various commonly used convex penalties, accompanied by an R-language package conquer available from the Comprehensive R Archive Network. We perform extensive numerical studies to demonstrate the superior performance of the proposed algorithm over existing methods in both statistical and computational aspects. We further exemplify the proposed algorithm by fitting a fused lasso additive QR model on the world happiness data.
Censored quantile regression (CQR) has become a valuable tool to study the heterogeneous association between a possibly censored outcome and a set of covariates, yet computation and statistical inference for CQR have remained a challenge for large-scale data with many covariates. In this paper, we focus on a smoothed martingale-based sequential estimating equations approach, to which scalable gradient-based algorithms can be applied. Theoretically, we provide a unified analysis of the smoothed sequential estimator and its penalized counterpart in increasing dimensions. When the covariate dimension grows with the sample size at a sublinear rate, we establish the uniform convergence rate (over a range of quantile indexes) and provide a rigorous justification for the validity of a multiplier bootstrap procedure for inference. In high-dimensional sparse settings, our results considerably improve the existing work on CQR by relaxing an exponential term of sparsity. We also demonstrate the advantage of the smoothed CQR over existing methods with both simulated experiments and data applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.