Summary
The mechanisms responsible for maintaining genomic methylation imprints in mouse embryos are not understood. We generated a knockout mouse in the Zfp57 locus encoding a KRAB zinc finger protein. Loss of just the zygotic function of Zfp57 causes partial neonatal lethality, while eliminating both maternal and zygotic functions of Zfp57 results in a highly penetrant embryonic lethality. In oocytes, absence of Zfp57 results in failure to establish maternal methylation imprints at the Snrpn imprinted region. Intriguingly, methylation imprints are re-acquired specifically at the maternally derived Snrpn imprinted region when the zygotic Zfp57 is present in embryos. This suggests that there may be DNA methylation-independent memory for genomic imprints. Zfp57 is also required for the post-fertilization maintenance of maternal and paternal methylation imprints at multiple imprinted domains. The effects on genomic imprinting are consistent with the maternal-zygotic lethality of Zfp57 mutants.
Background: ZFP57 is a maternal-zygotic effect gene that maintains genomic imprinting in mouse embryos. Results: KAP1 facilitates the interaction between ZFP57 and DNA methyltransferases. The KRAB box of ZFP57 is required for maintaining DNA methylation imprint in ES cells. Conclusion: ZFP57 recruits DNA methyltransferases and maintains DNA methylation imprint through KRAB box-mediated interaction.Significance: This work implies that ZFP57 recruits DNA methyltransferases via KAP1 to maintain DNA methylation imprint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.