Abstract:In recent years, multi-stage hydraulic fracturing technologies have greatly facilitated the development of unconventional oil and gas resources. However, a quantitative description of the "complexity" of the fracture network created by the hydraulic fracturing is confronted with many unsolved challenges. Given the multiple scales and heterogeneity of the fracture system, this study proposes a "bifurcated fractal" model to quantitatively describe the distribution of induced hydraulic fracture networks. The construction theory is employed to generate hierarchical fracture patterns as a scaled numerical model. With the implementation of discrete fractal-fracture network modeling (DFFN), fluid flow characteristics in bifurcated fractal fracture networks are characterized. The effects of bifurcated fracture length, bifurcated tendency, and number of bifurcation stages are examined. A field example of the fractured horizontal well is introduced to calibrate the accuracy of the flow model. The proposed model can provide a more realistic representation of complex fracture networks around a fractured horizontal well, and offer the way to quantify the "complexity" of the fracture network in shale reservoirs. The simulation results indicate that the geometry of the bifurcated fractal fracture network model has a significant impact on production performance in the tight reservoir, and enhancing connectivity of each bifurcate fracture is the key to improve the stimulation performance. In practice, this work provides a novel and efficient workflow for complex fracture characterization and production prediction in naturally-fractured reservoirs of multi-stage fractured horizontal wells.
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.