In crowd counting datasets, each person is annotated by a point, which is usually the center of the head. And the task is to estimate the total count in a crowd scene. Most of the state-of-the-art methods are based on density map estimation, which convert the sparse point annotations into a "ground truth" density map through a Gaussian kernel, and then use it as the learning target to train a density map estimator. However, such a "ground-truth" density map is imperfect due to occlusions, perspective effects, variations in object shapes, etc. On the contrary, we propose Bayesian loss, a novel loss function which constructs a density contribution probability model from the point annotations. Instead of constraining the value at every pixel in the density map, the proposed training loss adopts a more reliable supervision on the count expectation at each annotated point. Without bells and whistles, the loss function makes substantial improvements over the baseline loss on all tested datasets. Moreover, our proposed loss function equipped with a standard backbone network, without using any external detectors or multi-scale architectures, plays favourably against the state of the arts. Our method outperforms previous best approaches by a large margin on the latest and largest UCF-QNRF dataset. The source code is available at https://github.com/ZhihengCV/ Baysian-Crowd-Counting. arXiv:1908.03684v1 [cs.CV] 10 Aug 2019 pixel, our proposed training loss supervises on the count expectation at each annotated point, instead.Extensive experimental evaluations show that the proposed loss function substantially outperforms the baseline training loss on UCF-QNRF [16], ShanghaiTech [57], and UCF CC 50 [15] benchmark datasets. Moreover, our proposed loss function equipped with the standard VGG-19 network [39] as backbone, without using any external detectors or multi-scale architectures, achieves the state-ofthe-art performances on all the benchmark datasets, especially with a magnificent improvement on the UCF-QNRF dataset compared to other methods.
Abstract-Micro-expressions (MEs) are rapid, involuntary facial expressions which reveal emotions that people do not intend to show. Studying MEs is valuable as recognizing them has many important applications, particularly in forensic science and psychotherapy. However, analyzing spontaneous MEs is very challenging due to their short duration and low intensity. Automatic ME analysis includes two tasks: ME spotting and ME recognition. For ME spotting, previous studies have focused on posed rather than spontaneous videos. For ME recognition, the performance of previous studies is low. To address these challenges, we make the following contributions: (i) We propose the first method for spotting spontaneous MEs in long videos (by exploiting feature difference contrast). This method is training free and works on arbitrary unseen videos. (ii) We present an advanced ME recognition framework, which outperforms previous work by a large margin on two challenging spontaneous ME databases (SMIC and CASMEII). (iii) We propose the first automatic ME analysis system (MESR), which can spot and recognize MEs from spontaneous video data. Finally, we show our method outperforms humans in the ME recognition task by a large margin, and achieves comparable performance to humans at the very challenging task of spotting and then recognizing spontaneous MEs.
No abstract
Human action recognition from skeleton data, fuelled by the Graph Convolutional Network (GCN) with its powerful capability of modeling non-Euclidean data, has attracted lots of attention. However, many existing GCNs provide a pre-defined graph structure and share it through the entire network, which can loss implicit joint correlations especially for the higher-level features. Besides, the mainstream spectral GCN is approximated by one-order hop such that higher-order connections are not well involved. All of these require huge efforts to design a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for this task. Specifically, we explore the spatial-temporal correlations between nodes and build a search space with multiple dynamic graph modules. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a corresponding sampling- and memory-efficient evolution strategy is proposed to search in this space. The resulted architecture proves the effectiveness of the higher-order approximation and the layer-wise dynamic graph modules. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scale skeleton-based action recognition datasets. The results show that our model gets the state-of-the-art results in term of given metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.