BackgroundThe etiology and pathogenesis of pre-eclampsia (PE) is unclear, and there is no ideal early clinical biomarker for prediction of PE. The competing endogenous RNA (ceRNA) hypothesis is a new approach to uncover the molecular pathology of PE. The first aim of this study was to perform messenger RNA, long non-coding RNA, and circular RNA (circRNA) expression profiling of human normal and severe pre-eclampsia (SPE) placentas. circRNA, which has a stable structure, is a more suitable biomarker than other types of RNA. Therefore, the second aim of our study was to select some differentially expressed circRNAs in PE placentas as early clinical biomarkers of PE in blood circulation.ResultsUsing microarray analysis, we investigated differentially expressed ceRNAs in human normal and SPE placentas. Bioinformatics, such as gene ontology, KEGG pathway, and ceRNA network analyses, were performed to evaluate the microarray data and gain further insights into the biological processes. RNAs (Chd5, Furin, lnc-ELAVL4-9:1, lnc-RAP1GAP2-5:2, hsa_circ_0036877, hsa_circ_0036878, hsa_circ_0055724, hsa_circ_0049730, and hsa_circ_0036474) were validated by quantitative real-time PCR (qRT-PCR). RNA immunoprecipitation (RIP) of AGO2 in htra-8 cells and qRT-PCR analysis of hsa_circ_0036877 expression in maternal whole peripheral blood samples of participants were then conducted to confirm that hsa_circ_0036877 is a ceRNA and potential novel blood biomarker for early PE, respectively.ConclusionOur study is the first systematic profiling of ceRNAs in placentas of PE patients and revealed the global ceRNA network integration in PE. Moreover, hsa_circ_0036877 can function as a ceRNA and serve as a potential novel blood biomarker for early PE.Electronic supplementary materialThe online version of this article (10.1186/s13148-018-0482-3) contains supplementary material, which is available to authorized users.
Transforming growth factor (TGF)‑β regulates the anabolic metabolism of articular cartilage and prevents cartilage degradation. TGF‑β1 influences cellular proliferation, differentiation and the extracellular matrix through activation of the extracellular signal‑regulated kinase (ERK)1/2 and Smad2/3 signaling pathways. However, it has remained to be fully elucidated precisely how the ERK1/2 and Smad2/3 signaling pathways mediate anabolic processes of articular cartilage. The present study investigated how ERK1/2 and Smad2/3 signaling mediate TGF‑β1‑stimulated type II collagen and aggrecan expression in rat chondrocytes. The results confirmed that TGF‑β1 stimulates type II collagen and aggrecan expression in rat chondrocytes, and furthermore, that the ERK1/2 and Smad2/3 signaling pathways were activated by TGF‑β1. Conversely, the TGF‑β receptor I (ALK5) kinase inhibitor SB525334 significantly impaired TGF‑β1‑induced type II collagen and aggrecan expression, coinciding with a reduction of ERK1/2 and Smad3 phosphorylation. In addition, TGF‑β1‑induced type II collagen and aggrecan expression were significantly suppressed by ERK1/2 inhibitor PD98059. Similarly, TGF‑β1‑stimulated type II collagen and aggrecan expression were decreased in the presence of a Smad3 phosphorylation inhibitor SIS3. Therefore, the present study demonstrated that the ERK1/2 and Smad2/3 signaling pathways regulate type II collagen and aggrecan expression in rat chondrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.