Suppressor of variegation 3-9 homolog 1 (SUV39H1), a histone methyltransferase, catalyzes histone 3 lysine 9 trimethylation and is involved in heterochromatin organization and genome stability. However, the mechanism for regulation of the enzymatic activity of SUV39H1 in cancer cells is not yet well known. In this study, we identified SET domain-containing protein 7 (SET7/9), a protein methyltransferase, as a unique regulator of SUV39H1 activity. In response to treatment with adriamycin, a DNA damage inducer, SET7/9 interacted with SUV39H1 in vivo, and a GST pull-down assay confirmed that the chromodomain-containing region of SUV39H1 bound to SET7/9. Western blot using antibodies specific for antimethylated SUV39H1 and mass spectrometry demonstrated that SUV39H1 was specifically methylated at lysines 105 and 123 by SET7/9. Although the half-life and localization of methylated SUV39H1 were not noticeably changed, the methyltransferase activity of SUV39H1 was dramatically down-regulated when SUV39H1 was methylated by SET7/ 9. Consequently, H3K9 trimethylation in the heterochromatin decreased significantly, which, in turn, led to a significant increase in the expression of satellite 2 (Sat2) and α-satellite (α-Sat), indicators of heterochromatin relaxation. Furthermore, a micrococcal nuclease sensitivity assay and an immunofluorescence assay demonstrated that methylation of SUV39H1 facilitated genome instability and ultimately inhibited cell proliferation. Together, our data reveal a unique interplay between SET7/9 and SUV39H1-two histone methyltransferases-that results in heterochromatin relaxation and genome instability in response to DNA damage in cancer cells.histone methylation | nonhistone posttranslational modifications
The activation of ataxia-telangiectasia mutated (ATM) upon DNA damage involves a cascade of reactions, including acetylation by TIP60 and autophosphorylation. However, how ATM is progressively deactivated after completing DNA damage repair remains obscure. Here, we report that sirtuin 7 (SIRT7)–mediated deacetylation is essential for dephosphorylation and deactivation of ATM. We show that SIRT7, a class III histone deacetylase, interacts with and deacetylates ATM in vitro and in vivo. In response to DNA damage, SIRT7 is mobilized onto chromatin and deacetylates ATM during the late stages of DNA damage response, when ATM is being gradually deactivated. Deacetylation of ATM by SIRT7 is prerequisite for its dephosphorylation by its phosphatase WIP1. Consequently, depletion of SIRT7 or acetylation-mimic mutation of ATM induces persistent ATM phosphorylation and activation, thus leading to impaired DNA damage repair. Together, our findings reveal a previously unidentified role of SIRT7 in regulating ATM activity and DNA damage repair.
The ataxia-telangiectasia mutated (ATM) protein is a key signaling molecule that modulates the DNA damage response. However, the exact mechanism by which ATM regulates DNA damage repair has not yet been elucidated. Here, we report that ATM regulates the DNA damage response by phosphorylating lysine-specific demethylase 2A (KDM2A), a histone demethylase that acts at sites of H3K36 dimethylation. ATM interacts with KDM2A, and their interaction significantly increases in response to DNA double-stranded, but not single-stranded, breaks. ATM specifically phosphorylates KDM2A at threonine 632 (T632) following DNA damage, as demonstrated by a mutagenesis assay and mass spectrometric analysis. Although KDM2A phosphorylation does not alter its own demethylase activity, T632 phosphorylation of KDM2A largely abrogates its chromatin-binding capacity, and H3K36 dimethylation near DNA damage sites is significantly increased. Consequently, enriched H3K36 dimethylation serves as a platform to recruit the MRE11 complex to DNA damage sites by directly interacting with the BRCT2 domain of NBS1, which results in efficient DNA damage repair and enhanced cell survival. Collectively, our study reveals a novel mechanism for ATM in connecting histone modifications with the DNA damage response.
Linker histone H1 is a master regulator of higher order chromatin structure, but its involvement in the DNA damage response and repair is unclear. Here, we report that linker histone H1.2 is an essential regulator of ataxia telangiectasia mutated (ATM) activation. We show that H1.2 protects chromatin from aberrant ATM activation through direct interaction with the ATM HEAT repeat domain and inhibition of MRE11-RAD50-NBS1 (MRN) complex-dependent ATM recruitment. Upon DNA damage, H1.2 undergoes rapid PARP1-dependent chromatin dissociation through poly-ADP-ribosylation (PARylation) of its C terminus and further proteasomal degradation. Inhibition of H1.2 displacement by PARP1 depletion or an H1.2 PARylation-dead mutation compromises ATM activation and DNA damage repair, thus leading to impaired cell survival. Taken together, our findings suggest that linker histone H1.2 functions as a physiological barrier for ATM to target the chromatin, and PARylation-mediated active H1.2 turnover is required for robust ATM activation and DNA damage repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.