Warm Mix Asphalt (WMA) technology can effectively reduce carbon emissions and energy consumption during road project construction. However, it may have a negative impact on the binding properties of asphalt mixtures. In order to effectively evaluate the adhesion performance of asphalt binders and aggregates under the combined influence of WMA and traditional polymer-modified asphalt, this paper provides a comprehensive evaluation at the micro and macro levels. The adhesion between three different modified asphalts (warm mix crumb rubber/ Styrene-Butadiene-Styrene (SBS) composite modified asphalt, warm mix crumb rubber asphalt, and warm mix SBS modified asphalt) and two different aggregates (limestone and granite) under both virgin and short-term aging conditions were analyzed. Regardless of the type of modified asphalt, the results showed that limestone aggregates have better adhesion properties with asphalt binders. In addition, the short-term thermal oxidation aging behavior is conducive to enhancing the asphalt-aggregate adhesion characteristics. Furthermore, WMA additives, crumb rubber, and SBS compound modification can improve the adhesion performance between asphalt and aggregate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.