BackgroundThe growth differentiation factor 11 (GDF11) was shown to reverse age-related hypertrophy on cardiomyocytes and considered as anti-aging rejuvenation factor. The role of GDF11 in regulating metabolic homeostasis is unclear. In this study, we investigated the functions of GDF11 in regulating metabolic homeostasis and energy balance.MethodsUsing a hydrodynamic injection approach, plasmids carrying a mouse Gdf11 gene were delivered into mice and generated the sustained Gdf11 expression in the liver and its protein level in the blood. High fat diet (HFD)-induced obesity was employed to examine the impacts of Gdf11 gene transfer on HFD-induced adiposity, hyperglycemia, insulin resistance, and hepatic lipid accumulation. The impacts of GDF11 on metabolic homeostasis of obese and diabetic mice were examined using HFD-induced obese and STZ-induced diabetic models.ResultsGdf11 gene transfer alleviates HFD-induced obesity, hyperglycemia, insulin resistance, and fatty liver development. In obese and STZ-induced diabetic mice, Gdf11 gene transfer restores glucose metabolism and improves insulin resistance. Mechanism study reveals that Gdf11 gene transfer increases the energy expenditure of mice, upregulates the expression of genes responsible for thermoregulation in brown adipose tissue, downregulates the expression of inflammatory genes in white adipose tissue and those involved in hepatic lipid and glucose metabolism. Overexpression of GDF11 also activates TGF-β/Smad2, PI3K/AKT/FoxO1, and AMPK signaling pathways in white adipose tissue.ConclusionsThese results demonstrate that GDF11 plays an important role in regulating metabolic homeostasis and energy balance and could be a target for pharmacological intervention to treat metabolic disease.
BackgroundRecent studies have indicated that microRNA-223 (miR-223) plays a role in the tissue-protective effect of mesenchymal stem cells (MSCs). NLR family-pyrin domain containing 3 (NLRP3) was reported to affect a renal ischemia/reperfusion (I/R) injury by exerting a direct effect on the renal tubular epithelium. Therefore, we investigated how miR-223 and NLRP3 might function in kidneys exposed to conditions of ischemia and subsequent reperfusion.MethodsHypoxia/reoxygenation (H/R) murine renal tubular epithelial cells (RTECs) were cocultured with either MSCs or hypoxia-pretreated MSCs (htMSCs), after which the RTECs were examined for their viability and evidence of apoptosis. Next, miR-223 expression in the MSCs was downregulated to verify that MSCs protected RTECs via the transport of miR-223. Kidney I/R KM/NIH mouse models were created and used for in vivo studies.ResultsThe results showed that coculture with MSCs significantly increased the viability of RTECs and decreased their rates of apoptosis. The levels of hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF-1), transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) in samples of coculture supernatants were higher than those in samples of non-coculture supernatants. A bioinformatics analysis revealed a targeting relationship between miR-223 and NLRP3. A dual luciferase assay showed that miR-223 inhibited NLRP3 expression. The htMSCs displayed a protective function associated with an upregulation of miR-223 as induced by Notch1 and the downregulation of NLRP3. Conversely, inhibition of miR-223 impeded the protective effect of MSCs. In the I/R mouse models, injection of either MSCs or htMSCs ameliorated the damage to kidney tissue, while suppression of miR-223 expression in MSCs reduced their protective effect on mouse kidneys.ConclusionsOur results demonstrate that miR-223 and NLRP3 play important roles in the treatment of renal tissue injuries with transplanted MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.