Block copolymerization of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) with 2‐hydroxyethyl methacrylate (HEMA) via atom transfer radical polymerization (ATRP) was studied in methanol using a macroinitiator method and a “one‐pot” sequential addition method. The polymerization sequence of the two monomers strongly affected the block copolymer formation. When DMAEMA was used as the first monomer, both methods produced block copolymer samples containing significant amounts of DMAEMA homopolymer chains, because of the elimination of active halogen chain‐ends during the preparation of polyDMAEMA. Well‐controlled block copolymers with various block lengths were obtained via the macroinitiator method when polyHEMA was used as macroinitiator to initiate the polymerization of DMAEMA. The sequential addition method, in which HEMA was polymerized first with 90% conversion and DMAEMA was subsequently added, also yielded controlled block copolymers when the polymerization was carried out at room temperature with the DMAEMA conversion below 60%. Increasing the temperature to 60 °C promoted the copolymerization rate but the reaction suffered from gel formation. The addition of water to the system accelerated the polymerization rate, but led to the loss of the system livingness.Gel permeation chromatograms of poly(HEMA‐b‐DMAEMA). The samples were prepared in methanol at room temperature with different block molecular weights using the macroinitiator method.magnified imageGel permeation chromatograms of poly(HEMA‐b‐DMAEMA). The samples were prepared in methanol at room temperature with different block molecular weights using the macroinitiator method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.