Mangrove endophytic fungi can produce impressive quantities of metabolites with promising antioxidant activities that may be useful to humans as novel physiological agents. In this study, we investigated the phylogenetic diversity and antioxidant potential of 46 fungal endophytes derived from the mangrove species Rhizophora stylosa and R. mucronata from the South China Sea. The fungal isolates were identified using a combination of morphological characteristics and phylogenetic analysis of the internal transcribed spacer (ITS) sequences. Seventeen genera belonging to 8 taxonomic orders of Ascomycota were discovered, specifically, Botryosphaeriales, Capnodiales, Diaporthales, Eurotiales, Glomerellales, Hypocreales, Pleosporales, and Xylariales. The most abundant fungal orders included Xylariales (35.49%) and Diaporthales (27.61%), which were predominantly represented by the culturable species Pestalotiopsis sp. (34.54%) and Diaporthe sp. (18.62%). The stems showed more frequent colonization and species diversity than the roots, leaves, hypocotyls, and flower tissues of the host plant. The antioxidant activities of all the isolated fungal extracts on four different culture media were assessed using improved 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) methods. A relatively high proportion (84.8%) of the isolates displayed antioxidant capacity (%RSA > 50%). Further research also provided the first evidence that HQD-6 could produce flufuran as a significant radical scavenger with IC50 values of 34.85±1.56 and 9.75±0.58 μg/mL, respectively. Our findings suggest that the utilization of a biotope such as that of the endophytic fungal community thriving on the mangrove plants R. stylosa and R. mucronata may be suitable for use as a sustainable resource for natural antioxidants.
Mangrove forests, one of the highest carbon density ecosystems, are very different from other forests as they occupy saline and tidal habitats. Although previous studies in forests, shrublands and grasslands have shown a positive effect of biodiversity on plant biomass and carbon storage, it remains unclear whether this relation to biodiversity also exists in mangrove forests.
Here, we evaluate the possible effects of mangrove species diversity, structural characteristics and environmental factors on mangrove biomass production and carbon storage, using survey data from 234 field plots of 30 transects in the mangrove forests along the coastlines of Hainan Island, China, during 2017 and 2018.
We found that mangrove species diversity had a positive effect, not only on mangrove biomass production but also on soil carbon storage. This positive effect was more strongly evident in the forest communities than in either the shrub communities or forest‐shrub mixed communities, with the forest type having the biggest mangrove biodiversity and carbon storage. Besides, the diversity effect was affected by structural characteristics, namely, mangrove biomass increased exponentially with tree stem diameter and decreased with tree density. Furthermore, we observed a resource‐dependent mediation of the mangrove ecosystem when linking diversity to biomass. The areas with high soil Nitrogen content and Mean annual precipitation (MAP) showed higher mangrove biomass and carbon storage. This suggests that the spatial pattern of mangrove carbon storage and diversity was driven by both climate factors (MAP) and soil fertility (soil N).
To our knowledge, this is the first study based on an intensive field survey that has verified the positive effect of biodiversity on mangrove biomass and carbon storage. Our findings suggest that mangrove forests with greater diversity also have higher carbon storage capacities and conservation potential. Thus, biodiversity conservation is crucial for mangroves to mitigate the greenhouse effect. Our findings strengthen the understanding of the diversity effects on mangrove ecosystem services and have important implications for mangrove restoration and conservation.
A free Plain Language Summary can be found within the Supporting Information of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.