Based on conserved expression patterns, three members of the GATA family of transcriptional regulatory proteins, GATA-4, -5, and -6, are thought to be involved in the regulation of cardiogenesis and gut development. Functions for these factors are known in the heart, but relatively little is understood regarding their possible roles in the regulation of gut-specific gene expression. In this study, we analyze the expression and function of GATA-4, -5, and -6 using three separate but complementary vertebrate systems, and the results support a function for these proteins in regulating the terminal-differentiation program of intestinal epithelial cells. We show that xGATA-4, -5, and -6 can stimulate directly activity of the promoter for the intestinal fatty acidbinding protein (xIFABP) gene, which is a marker for differentiated enterocytes. This is the first direct demonstration of a target for GATA factors in the vertebrate intestinal epithelium. Transactivation by xGATA-4, -5, and -6 is mediated at least in part by a defined proximal IFABP promoter element. The expression patterns for cGATA-4, -5, and -6 are markedly distinct along the proximal-distal villus axis. Transcript levels for cGATA-4 increase along the axis toward the villus tip; likewise, cGATA-5 transcripts are largely restricted to the distal tip containing differentiated cells. In contrast, the pattern of cGATA-6 transcripts is complementary to cGATA-5, with highest levels detected in the region of proliferating progenitor cells. Undifferentiated and proliferating human HT-29 cells express hGATA-6 but not hGATA-4 or hGATA-5. Upon stimulation to differentiate, the transcript levels for hGATA-5 increase, and this occurs prior to increased transcription of the terminal differentiation marker intestinal alkaline phosphatase. At the same time, hGATA-6 steady-state transcript levels decline appreciably. All of the data are consistent with evolutionarily conserved but distinct roles for these factors in regulating the differentiation program of intestinal epithelium. Based on this data, we suggest that GATA-6 might function primarily within the proliferating progenitor population, while GATA-4 and GATA-5 function during differentiation to activate terminal-differentiation genes including IFABP.The intestinal epithelium provides an excellent model system for investigating molecular mechanisms regulating cell lineage establishment, stem cell proliferation, morphogenesis, and the specialization of cell function during terminal differentiation (see references 9 and 16 for reviews). In all vertebrates, the embryonic intestinal lumen is lined by an endoderm-derived epithelial sheet, a monolayer consisting of four principal cell types that are renewed from a proliferating stem cell population. Lineage tracing experiments (7, 39) demonstrated that the four cell types are derived from a small population of multipotential stem cells present near the villus base (the crypt). The differentiating cells migrate from the crypt toward the villus tip, where they eventually ...
TNF-␣ has both proinflammatory and immunoregulatory functions. Whereas a protective role for TNF administration in systemic lupus erythematosus (SLE)-prone (New Zealand Black ؋ New Zealand White)F 1 mice has been established, it remains uncertain whether this effect segregates at the individual TNFR. We generated SLE-prone New Zealand Mixed 2328 mice genetically deficient in TNFR1, in TNFR2, or in both receptors. Doubly-deficient mice developed accelerated pathological and clinical nephritis with elevated levels of circulating IgG anti-dsDNA autoantibodies and increased numbers of CD4 ؉ T lymphocytes, especially activated memory (CD44 high CD62L low ) CD4 ؉ T cells. We show that these cells expressed a Th17 gene profile, were positive for IL-17 intracellular staining by FACS, and produced exogenous IL-17 in culture. In contrast, immunological, pathological, and clinical profiles of mice deficient in either TNFR alone did not differ from those in each other or from those in wild-type controls. Thus, total ablation of TNF-␣-mediated signaling was highly deleterious to the host in the New Zealand Mixed 2328 SLE model. These observations may have profound ramifications for the use of TNF and TNFR antagonists in human SLE and related autoimmune disorders, as well as demonstrate, for the first time, the association of the Th17 pathway with an animal model of SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.