The spinal muscular atrophies (SMAs), characterized by spinal cord motor neuron depletion, are among the most common autosomal recessive disorders. One model of SMA pathogenesis invokes an inappropriate persistence of normally occurring motor neuron apoptosis. Consistent with this hypothesis, the novel gene for neuronal apoptosis inhibitory protein (NAIP) has been mapped to the SMA region of chromosome 5q13.1 and is homologous with baculoviral apoptosis inhibitor proteins. The two first coding exons of this gene are deleted in approximately 67% of type I SMA chromosomes compared with 2% of non-SMA chromosomes. Furthermore, RT-PCR analysis reveals internally deleted and mutated forms of the NAIP transcript in type I SMA individuals and not in unaffected individuals. These findings suggest that mutations in the NAIP locus may lead to a failure of a normally occurring inhibition of motor neuron apoptosis resulting in or contributing to the SMA phenotype.
We showed previously in neocortical explants, derived from developing wild-type and estrogen receptor (ER)-alpha gene-disrupted (ERKO) mice, that both 17alpha- and 17beta-estradiol elicit the rapid and sustained phosphorylation and activation of the mitogen-activated protein kinase (MAPK) isoforms, the extracellular signal-regulated kinases ERK1 and ERK2. We proposed that the ER mediating activation of the MAPK cascade, a signaling pathway important for cell division, neuronal differentiation, and neuronal survival in the developing brain, is neither ER-alpha nor ER-beta but a novel, plasma membrane-associated, putative ER with unique properties. The data presented here provide further evidence that points strongly to the existence of a high-affinity, saturable, 3H-estradiol binding site (K(d), approximately 1.6 nm) in the plasma membrane. Unlike neocortical ER-alpha, which is intranuclear and developmentally regulated, and neocortical ER-beta, which is intranuclear and expressed throughout life, this functional, plasma membrane-associated ER, which we have designated "ER-X," is enriched in caveolar-like microdomains (CLMs) of postnatal, but not adult, wild-type and ERKO neocortical and uterine plasma membranes. We show further that ER-X is functionally distinct from ER-alpha and ER-beta, and that, like ER-alpha, it is re-expressed in the adult brain, after ischemic stroke injury. We also confirmed in a cell-free system that ER-alpha is an inhibitory regulator of ERK activation, as we showed previously in neocortical cultures. Association with CLM complexes positions ER-X uniquely to interact rapidly with kinases of the MAPK cascade and other signaling pathways, providing a novel mechanism for mediation of the influences of estrogen on neuronal differentiation, survival, and plasticity.
We have shown that estrogen elicits a selective enhancement of the growth and differentiation of axons and dendrites (neurites) in the developing CNS. We subsequently demonstrated widespread colocalization of estrogen and neurotrophin receptors (trk) within developing forebrain neurons and reciprocal transcriptional regulation of these receptors by their ligands. Using organotypic explants of the cerebral cortex, we tested the hypothesis that estrogen/neurotrophin receptor coexpression also may result in convergence or cross-coupling of their signaling pathways. Estradiol elicited rapid (within 5-15 min) tyrosine phosphorylation/activation of the mitogen-activated protein (MAP) kinases, ERK1 and ERK2, that persisted for at least 2 hr. This extracellular signal-regulated protein kinase (ERK) activation was inhibited successfully by the MEK1 inhibitor PD98059, but not by the estrogen receptor (ER) antagonist ICI 182,780, and did not appear to result from estradiol-induced activation of trk. Furthermore, we also found that estradiol elicited an increase in B-Raf kinase activity. The latter and subsequent downstream events leading to ERK activation may be a consequence of our documentation of a multimeric complex consisting of, at least, the ER, hsp90, and B-Raf. These novel findings provide an alternative mechanism for some of the estrogen actions in the developing CNS and could explain not only some of the very rapid effects of estrogen but also the ability of estrogen and neurotrophins to regulate the same broad array of cytoskeletal and growth-associated genes involved in neurite growth and differentiation.
We have shown previously in the developing cerebral cortex that estrogen elicits the rapid and sustained activation of multiple signaling proteins within the mitogen-activated protein (MAP) kinase cascade, including B-Raf and extracellular signal-regulated kinase (ERK). Using estrogen receptor (ER)-alpha gene-disrupted (ERKO) mice, we addressed the role of ER-alpha in mediating this action of estrogen in the brain. 17beta-Estradiol increased B-Raf activity and MEK (MAP kinase/ERK kinase)-dependent ERK phosphorylation in cerebral cortical explants derived from both ERKO and their wild-type littermates. The ERK response was stronger in ERKO-derived cultures but, unlike that of wild-type cultures, was not blocked by the estrogen receptor antagonist ICI 182,780. Surprisingly, both the ER-alpha selective ligand 16alpha-iodo-17beta-estradiol and the ER-beta selective ligand genistein failed to elicit ERK phosphorylation, suggesting that a different mechanism or receptor may mediate estrogen-induced ERK phosphorylation in the cerebral cortex. Interestingly, the transcriptionally inactive stereoisomer 17alpha-estradiol did elicit a strong induction of ERK phosphorylation, which, together with the inability of the ER-alpha- and ER-beta-selective ligands to elicit ERK phosphorylation, and of ICI 182,780 to block the actions of estradiol in ERKO cultures, supports the hypothesis that a novel, estradiol-sensitive and ICI-insensitive estrogen receptor may mediate 17beta-estradiol-induced activation of ERK in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.