Osteosarcoma (OS), a common worldwide primary aggressive bone malignancy, arises from primitive transformed cells of mesenchymal origin and usually attacks adolescents and young adults. Methotrexate (MTX) is the anti-folate drug used as a pivotal chemotherapeutic agent in the treatment of OS. However, patients with OS often develop drug resistance, leading to poor treatment outcomes. In the present study, in order to explore the underlying mechanisms responsible for MTX resistance, we established MTX-resistant OS cells using the U2OS and MG63 cell lines and examined whether MTX-resistant OS cells underwent epithelial-mesenchymal transition (EMT) by Transwell assay, wound healing assay, MTT assay, RT-PCR and western blot analysis. We found that the viability of the MTX-resistant cells remained relatively unaltered following further treatment with MTX compared to the parental cells. The resistant cells appeared to possess a mesenchymal phenotype, with an elongated and more spindle-like shape, and acquired enhanced invasive, migratory and attachment abilities. The measurement of EMT markers also supported EMT transition in the MTX-resistant OS cells. Our result further demonstrated that the overexpression of S-phase kinase-associated protein 2 (Skp2) was closely involved in the resistance of OS cells to MTX and in the acquirement of EMT properties. Thus, the pharmacological inhibition of Skp2 may prove to be a novel therapeutic strategy with which to overcome drug resistance in OS.
Skp2 (S-phase kinase-associated protein 2) plays an oncogenic role in a variety of human cancers. However, the function of Skp2 in osteosarcoma (OS) is elusive. Therefore, in the current study, we explore whether Skp2 exerts its oncogenic function in OS. The cell growth, apoptosis, invasion and cell cycle were measured in OS cells after Skp2 overexpression. We found that overexpression of Skp2 enhanced cell growth, and inhibited cell apoptosis in OS cells. Moreover, we observed that upregulation of Skp2 accelerated cell cycle progression in OS cells. Furthermore, the ability of migration and invasion was enhanced in Skp2 overexpressing OS cells. Mechanically, our Western blotting data suggested that Skp2 decreased the expression of E-cadherin, Foxo1, p21, and p57, but increased MMP-9 in OS cells. In conclusion, our study demonstrated that Skp2 exhibited an oncogenic function in OS cells, suggesting that inhibition of Skp2 may be a novel approach for the treatment of OS.
Abstract. Osteosarcoma (OS) is a common bone tumor that mainly affects children and young adults. S-phase kinase-associated protein 2 (Skp2) has been characterized to play a critical oncogenic role in a variety of human malignancies. However, the biological function of Skp2 in OS remains largely obscure. In the present study, we elucidated the role of Skp2 in cell growth, cell cycle, apoptosis and migration in OS cells. We found that depletion of Skp2 inhibited cell growth in both MG-63 and SW 1353 cells. Moreover, we observed that depletion of Skp2 triggered cell apoptosis in two OS cell lines. Furthermore, downregulation of Skp2 induced cell cycle arrest in the G0/G1 phase in OS cells. Notably, our wound healing assay results revealed that inhibition of Skp2 suppressed cell migration in OS cells. Invariably, our western blot results demonstrated that depletion of Skp2 in OS cells inhibited activation of pAkt and increased p27 expression in OS cells, suggesting that Skp2 exerted its oncogenic function partly through the regulation of Akt and p27. Our findings revealed that targeting Skp2 could be a promising therapeutic strategy for the treatment of OS.
S-phase kinase-associated protein 2 (Skp2) performs oncogenic functions in cancers; however, how Skp2 is regulated post-transcriptionally is elusive in osteosarcoma. Therefore, we determined whether miR-506 could directly target Skp2 in osteosarcoma to perform its tumor suppressive functions. Here, we found that miR-506 mimics suppressed cell viability, induced apoptosis, and attenuated migration and invasion in osteosarcoma cells. Moreover, upregulation of Skp2 accelerated cell viability and motility and rescued the tumor suppressive effect of miR-506 in osteosarcoma cells. Moreover, downregulation of Skp2 inhibited cell viability and decreased cell motility, which enhanced the antitumor activity induced by miR-506 mimic transfection in osteosarcoma cells. Our western blotting results implied that miR-506 inhibited Skp2 expression and subsequently upregulated Foxo1 and p57 in OS cells. In summary, miR-506 performs an anticancer activity via directly targeting Skp2 in osteosarcoma cells, indicating that inactivation of Skp2 by miR-506 might be an alternative strategy for treating osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.