The superconvergence phenomenon of the composite Simpson's rule for the finite-part integral with a third-order singularity is studied. The superconvergence points are located and the superconvergence estimate is obtained. Some applications of the superconvergence result, including the evaluation of the finite-part integrals and the solution of a certain finite-part integral equation, are also discussed and two algorithms are suggested. Numerical experiments are presented to confirm the superconvergence analysis and to show the efficiency of the algorithms.
The Clausen functions appear in many problems, such as in the computation of singular integrals, quantum field theory, and so on. In this paper, we consider the Clausen functions Cl n (θ ) with n ≥ 2. An efficient algorithm for evaluating them is suggested and the corresponding convergence analysis is established. Finally, some numerical examples are presented to show the efficiency of our algorithm.
The numerical solution for a kind of third-order boundary value problems is discussed. With the barycentric rational interpolation collocation method, the matrix form of the third-order two-point boundary value problem is obtained, and the convergence and error analysis are obtained. In addition, some numerical examples are reported to confirm the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.