Axin is a key scaffolding protein responsible for the formation of the β-catenin destruction complex. Stability of Axin protein is regulated by the ubiquitin-proteasome system, and modulation of cellular concentration of Axin protein has a profound effect on Wnt/β-catenin signaling. Although E3s promoting Axin ubiquitination have been identified, the deubiquitinase responsible for Axin deubiquitination and stabilization remains unknown. Here, we identify USP7 as a potent negative regulator of Wnt/β-catenin signaling through CRISPR screens. Genetic ablation or pharmacological inhibition of USP7 robustly increases Wnt/β-catenin signaling in multiple cellular systems. USP7 directly interacts with Axin through its TRAF domain, and promotes deubiquitination and stabilization of Axin. Inhibition of USP7 regulates osteoblast differentiation and adipocyte differentiation through increasing Wnt/β-catenin signaling. Our study reveals a critical mechanism that prevents excessive degradation of Axin and identifies USP7 as a target for sensitizing cells to Wnt/β-catenin signaling.
Trs130 is a specific component of the TRAPP II (Transport protein particle II) complex, which functions as a guanine exchange factor (GEF) for Rab GTPases Ypt31/32. Ypt31/32 is known to be involved in autophagy, although the precise mechanism has not been thoroughly studied. In this study, we investigated the potential involvement of Trs130 in autophagy and found that both the cytoplasm-to-vacuole targeting (Cvt) pathway and starvation-induced autophagy were defective in a trs130ts (trs130 temperature-sensitive) mutant. Mutant cells could not transport Atg8 and Atg9 to the preautophagosomal structure/ phagophore assembly site (PAS) properly, resulting in multiple Atg8 dots and Atg9 dots dispersed in the cytoplasm. Some dots were trapped in the trans-Golgi. Genetic studies showed that the effect of the Trs130 mutation was downstream of Atg5 and upstream of Atg1, Atg13, Atg9 and Atg14 on the autophagic pathway. Furthermore, overexpression of Ypt31 or Ypt32, but not of Ypt1, rescued autophagy defects in trs130ts and trs65ts (Trs130-HA Trs120-myc trs65Δ) mutants. Our data provide mechanistic insight into how Trs130 participates in autophagy and suggest that vesicular trafficking regulated by GTPases/GEFs is important in the transport of autophagy proteins from the trans-Golgi to the PAS.
cells. First, we show that expression of GFP-Snc1 in trs85Δ mutant cells results in temperature sensitivity. Second, we suggest that in ypt1ts and trs85Δ, but not in ypt31Δ/32ts and trs130ts mutant cells, GFP-Snc1 accumulates in the ER. Third, we show that overexpression of Ypt1, but not Ypt31/32, can suppress both the growth and GFP-Snc1 accumulation phenotypes of trs85Δ mutant cells. In contrast, overexpression of Ypt31, but not Ypt1, suppresses the growth and GFP-Snc1 transport phenotypes of trs130ts mutant cells. These results provide genetic support for functional grouping of Ypt1 with Trs85-containing TRAPP III and Ypt31/32 with Trs130-containing TRAPP II.
Background: Most researchers have accepted that unipotent progenitors are the predominant components in bone marrow for tissue regeneration. However, the unipotent progenitors for blood components are still unclear. We previously found that erythrocytes are derived from a distinct unipotent progenitors, or erythrocyte sacs. Methods: In the current study, we investigated if the other types of unipotent blood cell progenitors existed, what was their original morphologies, and the mechanism of their generation in mouse blood. Results: We found two morphologically distinct structures that released spore-like small progenitors in mouse blood. One structure was filamentary-like, contained inclusions, widened due to differentiation of the inclusions, and eventually, released spore-like DNA+ and cluster of differentiation 34 (CD34) + spore-like small progenitors. Another structure was bud-like, contained inclusion, enlarged from less than 10 µm to more than 30 µm, and also released many spore-like small progenitors. Each type of these spore-like progenitors was approximately 1 µm in diameter and could continue to transdifferentiate in circulation. Conclusions: Our data provide evidence that two types of blood cell restricted progenitors are produced from either filamentary structures or bud-like structures. Both filamentary and bud-like structures were originally released from morphologically distinct, or lineage predetermined tube-shaped structures, or specific niches. Thus, distinct lineages of blood unipotent progenitors are newly produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.