It is well known that stochastic coupled oscillator network (SCON) has been widely applied; however, there are few studies on SCON with bidirectional cross-dispersal (SCONBC). This paper intends to study stochastic stability for SCONBC. A new and suitable Lyapunov function for SCONBC is constructed on the basis of Kirchhoff's matrix tree theorem in graph theory. Combining stochastic analysis skills and Lyapunov method, a sufficient criterion guaranteeing stochastic stability for the trivial solution of SCONBC is provided, which is associated with topological structure and coupling strength of SCONBC. Furthermore, some numerical simulation examples are given in order to illustrate the validity and practicability of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.