Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes that currently lacks specific treatment. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been suggested to contribute to the pathogenesis of cardiovascular diseases. However, whether cGAS-STING is involved in the development of DCM has not been established. Our study aimed to determine the role of cGAS-STING in the initiation of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome-induced cardiac pyroptosis and chronic inflammation during the pathogenesis of DCM. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically knock down myocardial STING. After four weeks, mice with myocardium-specific knockdown of STING received injections of streptozotocin (STZ; 50 mg/kg) and a high-fat diet to induce diabetes. Measurements included echocardiography, immunohistochemical analyses, wheat germ agglutinin (WGA) staining, and western blotting. Here, we showed that the cGAS-STING signaling pathway was activated in diabetic hearts, which was indicated by the increased phosphorylation of TANK-binding kinase 1 (TBK1) and interferon (IFN) regulatory factor 3 (IRF3), leading to the activation of the NLRP3 inflammasome in the hearts of diabetic mice and proinflammatory cytokine release into serum. Moreover, STING knockdown via adeno-associated virus-9 (AAV9) in diabetic mouse heart alleviated cardiac pyroptosis and the inflammatory response, prevented diabetes-induced hypertrophy, and restored cardiac function. Mechanistically, we showed that palmitic acid (PA)-induced lipotoxicity impairs mitochondrial homeostasis, producing excessive mitochondrial reactive oxygen species (mtROS), which results in oxidative damage to mitochondrial DNA (mtDNA) and its release into the cytoplasm while switching on cGAS-STING-mediated pyroptosis in cardiomyocytes, thereby worsening the progression of diabetic cardiomyopathy. Our study demonstrated that activation of the cGAS-STING pathway caused by mitochondrial oxidative damage and mtDNA escape induced by free fatty acids promoted pyroptosis and proinflammatory responses in cardiomyocytes in a NLRP3 inflammasome-dependent manner, thus promoting myocardial hypertrophy during the progression of DCM.
Transforming growth factor-β (TGF-β) signaling pathway is involved in fibrosis in most, if not all forms of cardiac diseases. Here, we evaluate a positive feedback signaling the loop of TGF-β1/promyelocytic leukemia (PML) SUMOylation/Pin1 promoting the cardiac fibrosis. To test this hypothesis, the mice underwent transverse aortic constriction (3 weeks) were developed and the morphological evidence showed obvious interstitial fibrosis with TGF-β1, Pin1 upregulation, and increase in PML SUMOylation. In neonatal mouse cardiac fibroblasts (NMCFs), we found that exogenous TGF-β1 induced the upregulation of TGF-β1 itself in a time-and dose-dependent manner, and also triggered the PML SUMOylation and the formation of PML nuclear bodies (PML-NBs), and consequently recruited Pin1 into nuclear to colocalize with PML. Pharmacological inhibition of TGF-β signal or Pin1 with LY364947 (3 μM) or Juglone (3 μM), the TGF-β1-induced PML SUMOylation was reduced significantly with downregulation of the messenger RNA and protein for TGF-β1 and Pin1. To verify the cellular function of PML by means of gain-or loss-offunction, the positive feedback signaling loop was enhanced or declined, meanwhile,
RNF4, a poly‐SUMO‐specific E3 ubiquitin ligase, is associated with protein degradation, DNA damage repair and tumour progression. However, the effect of RNF4 in cardiomyocytes remains to be explored. Here, we identified the alteration of RNF4 from ischaemic hearts and oxidative stress‐induced apoptotic cardiomyocytes. Upon myocardial infarction (MI) or H2O2/ATO treatment, RNF4 increased rapidly and then decreased gradually. PML SUMOylation and PML nuclear body (PML‐NB) formation first enhanced and then degraded upon oxidative stress. Reactive oxygen species (ROS) inhibitor was able to attenuate the elevation of RNF4 expression and PML SUMOylation. PML overexpression and RNF4 knockdown by small interfering RNA (siRNA) enhanced PML SUMOylation, promoted p53 recruitment and activation and exacerbated H2O2/ATO‐induced cardiomyocyte apoptosis which could be partially reversed by knockdown of p53. In vivo, knockdown of endogenous RNF4 via in vivo adeno‐associated virus infection deteriorated post‐MI structure remodelling including more extensive interstitial fibrosis and severely fractured and disordered structure. Furthermore, knockdown of RNF4 worsened ischaemia‐induced cardiac dysfunction of MI models. Our results reveal a novel myocardial apoptosis regulation model that is composed of RNF4, PML and p53. The modulation of these proteins may provide a new approach to tackling cardiac ischaemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.