A new approach has been developed to prepare stable microbubbles (MBs) by interfacial nanoprecipitation of bioabsorbable polymers at air/liquid interfaces. This facile method offers robust control over the morphology and chemophysical properties of MBs by simple chemical modifications. This approach is amenable to large-scale manufacturing, and is useful to develop functional MBs for advanced biomedical applications. To demonstrate this, a MB-based intravenous oxygen carrier was created that undergoes pH-triggered self-elimination. Intravenous injection of previous MBs increased the risk of pulmonary vascular obstruction. However, we show, for the first time, that our current design is superior, as they 1) yielded no evidence of acute risks in rodents, and 2) improved the survival in a disease model of asphyxial cardiac arrest (from 0 to 100 %), a condition that affects more than 100 000 in-hospital patients, and carries a mortality of about 90 %.
LOMs may be injected in quantities sufficient to deliver clinically meaningful volumes of oxygen but cause significant decrements in blood pressure and elevations in PVR.
Cerebral rSO in isolation should not be used to detect low ScvO, because its sensitivity is low, although correction of rSO for arterial contamination may improve sensitivity. Cerebral rSO of 50 or greater should not be considered reassuring, though values below 30 are specific for low ScvO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.