In this paper we study nonlinear Lagrangian functions for constrained optimization problems which are, in general, nonlinear with respect to the objective function. We establish an equivalence between two types of zero duality gap properties, which are described using augmented Lagrangian dual functions and nonlinear Lagrangian dual functions, respectively. Furthermore, we show the existence of a path of optimal solutions generated by nonlinear Lagrangian problems and show its convergence toward the optimal set of the original problem. We analyze the convergence of several classes of nonlinear Lagrangian problems in terms of their first and second order necessary optimality conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.