IntroductionAvailable phosphorus (P) scarcity in the highly weathered soils of the subtropical forests in southern China is a serious concern. To ensure whether inoculation of arbuscular mycorrhizal fungi (AMF) with Chinese fir (Cunninghamia lanceolata) under low P stress conditions could promote its growth and P utilization capacity, an indoor pot simulation experiment was carried out with the different P supply treatments and Chinese fir seedlings as the tested material.MethodsThe experiment had two P supply treatments, no P supply (P0, 0 mmol·L-1 KH2PO4) and normal P supply (P1, 1.0 mmol·L-1 KH2PO4). The seedling in each P supply treatment was inoculated with Glomus intraradices (Gi), a widespread species of AMF in the natural environment, and with no AMF inoculation as a control treatment (CK). The Gi infection rate in the root system, root cortex tissue dissolution rate, root morphological indexes and biomass, whole plant P use efficiency, and root P use efficiency of Chinese fir were determined under different treatment conditions.Results and DiscussionThe results showed that P0 treatment significantly increased the Gi infection rate (p< 0.05). After inoculating AMF with different P supply treatments, the root cortex tissue dissolution rate was considerably enhanced. In contrast, the Chinese fir’s root length and surface area were reduced; however, the root volume did not change significantly. The average root diameter in the P0 treatment and inoculated with AMF was significantly more prominent than in the uninoculated treatment (p< 0.05). The root biomass and root-to-shoot ratio at different P supply treatments were significantly higher in the Gi infection treatment than in the CK group. Under different P supply treatments, root inoculation with Gi promoted root P use efficiency and whole plant P use efficiency. In conclusion, low P stress condition promoted the colonization of AMF in the root system, increased the dissolution of root cortex tissue, root volume, and the average diameter, and promoted root biomass accumulation and P use efficiency.
IntroductionThe longitudinal section cell morphology of Chinese fir roots was studied to better understand the relationship between root structure and root function.MaterialsIn this study, the adjusted microwave paraffin section method and the selected two sample transparency methods were used to process the Chinese fir roots and combined with the laser scanning confocal microscopy (LSCM) technique, the morphology of Chinese fir roots longitudinal section can be clearly observed in a short time. At the same time, the observation effect of the longitudinal section cell morphology of the LSCM image of the thick section of the Chinese fir roots and the ordinary optical imaging of the thin section was analyzed and compared.Results and DiscussionThe results showed that: (1) There were apparent differences in the observation effect of cell morphology in longitudinal sections of Chinese fir roots obtained using various treatment methods. Under LSCM, the section with a thickness of 20 μm generated by the microwave paraffin section technique displayed complete cell morphology and clear structure in the root cap, meristem zone, and elongation zone. The overall imaging effect was good; the thickness was 0.42–1.01, 0.64–1.57, and 0.95–2.71 mm, respectively. The cell arrangement in maturation zone cells was more regular. (2) Compared to the ordinary optical imaging of thin sections, the thick sections of roots made by the microwave paraffin section method shortened the time to obtain high-quality sections to ensure the observation effect. Therefore, adopting the microwave paraffin cutting approach to produce thicker root sections under LSCM allows for rapid observation of the cell morphology in longitudinal sections of Chinese fir roots. The current study provides the efficient operation procedure for the microscopic observation technology of the longitudinal section of Chinese fir roots, which is not only beneficial to reveal the relationship between the root structure and function from the microscopic point of view but also provides a technical reference for the anatomical study of other organs and the observation of the longitudinal section cell morphology of plant roots with similar structural characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.