Exceptional points (EPs) are degeneracies at which two or more eigenvalues and eigenstates of a physical system coalesce. Dynamically encircling EPs by varying the parameters of a non-Hermitian system enables chiral mode switching, that is, the final state of the system upon a closed loop in parameter space depends on the encircling handedness. In conventional schemes, the parametric evolution during the encircling process has to be sufficiently slow to ensure adiabaticity. Here, we show that fast parametric evolution along the parameter space boundary of the system Hamiltonian can relax this constraint. The proposed scheme enables highly efficient transmission and more compact footprint for asymmetric mode converters. We experimentally demonstrate these principles in a 57 μm-long double-coupled silicon waveguide system, enabling chiral mode switching with near-unity transmission efficiency at 1550 nm. This demonstration paves the way towards high-efficiency and highly integrated chiral mode switching for a wide range of practical applications.
Ultrasound can be used to induce cell resonance and cavitation to inhibit cyanobacterial growth, but it can also lead to increase in dissolved nutrients because of cell disruption. This study investigated the process from cell inactivation to disruption of Microcystis aeruginosa. Algal cells were sonicated (at 35 kHz) under various intensities and durations. Results showed that chlorophyll a content and F /F values decreased slightly within the first 5 min. Superoxide dismutase activity was stimulated and its peak value appeared at the fifth minute. After 20 min, considerable number of ruptured cells were observed and the concentrations of dissolved nitrogen and phosphorus increased rapidly. Finally, ammonia and nitrate merely composed a small portion of dissolved nitrogen. This study demonstrated that excessive ultrasound treatment can significantly rupture algal cells and lead to the release of cellular inclusions, which may cause ecological issues or public health problems. Based on our findings, ultrasonic intensity controlled at 0.035 W/mL and applied for a duration of 20 min delivers the optimal result in effectively inhibiting physiological activities of Microcystis aeruginosa without marked cell disruption. This will ultimately help to achieve algal control, while conserving energy and preserving the environment and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.