Sperm motility is essential for male reproduction or natural fertilization. The cyclic AMP (cAMP)/cAMP-dependent protein kinase A (PKA) signaling pathway is generally recognized as one of the significant signaling pathways in the regulation of mammalian spermatozoan motility. Since Zn-a2-glycoprotein (ZAG) activity in mammalian adipose tissue is mediated via the b 3 -adrenoreceptor, with upregulation of the cAMP pathway, we hypothesize that ZAG may play the same role in sperm motility regulation, a new factor of regulation of sperm motility. Therefore, the gene encoding human ZAG was cloned and polyclonal antibodies were generated, and then laser scanning confocal microscopy and flow cytometry were employed to identify this protein in human spermatozoa. The results showed that ZAG protein was mostly localized on the pre-equatorial region covering the acrosome, neck, and middle piece of the flagellum of spermatozoa. Furthermore, using computer-assisted sperm analysis, we found that anti-human ZAG antibodies could significantly reduce the motility of human swim-up spermatozoa after 90-or 120-min incubation (P!0.05 and P!0.01 respectively), together with the decreasing of intracellular cAMP and PKA levels. In conclusion, these data suggest that ZAG is present in human spermatozoa and may be involved in the regulation of sperm motility via the cAMP/PKA signaling pathway.
Seminal plasma, an amorphous material that exists in semen, contains proteins related to sperm forward motility. Employing affinity chromatography with ConA beads and protein ultrafiltration, we isolated and concentrated proteins from heated human seminal plasma. Results of computer-assisted semen analyses (CASA) demonstrated that the forward motility index of bovine spermatozoa from the epididymal caput, incubated with proteins and theophylline, was significantly different from that of spermatozoa incubated with theophylline alone (P < 0.01). The electrophoreses revealed that the protein bands with high molecular weights in the gel of PAGE changed into low molecular weights in the gel of SDS-PAGE. Furthermore, proteins from a separated portion of the PAGE gel were still able to stimulate spermatozoa from the epididymal caput to gain forward motility. Two-dimensional (2D)-gel electrophoresis and mass spectrometry indicated that spots focused on the portion seemed, according to their amino acid sequences, to be like human alpha-1-antitrypsin and zinc-alpha-2-glycoprotein (ZAG) precursors. Western blot analysis showed the presence of these two proteins in seminal plasma. These proteins, related to the forward motility of spermatozoa in human seminal plasma, may play important roles during maturation of spermatozoa, from the epididymis through fertilization in the female reproductive tract.
BackgroundSperm-oocyte fusion is a critical step in fertilization, which requires a series of proteins from both spermatozoa and oocyte to mediate membrane adhesion and subsequent fusion. A rat spermatozoa membrane protein is endoplasmic reticulum protein 29 (ERp29), which significantly increases on the sperm surface as well as in the cytoplasm of epididymal epithelia from caput to cauda as the sperm undergo epididymal maturation. Moreover, ERp29 facilitates viral infection via mediating membrane penetration. We determined if in addition to promoting sperm maturation ERp29 may also play a role in facilitating gamete fusion during the fertilization process.MethodsLaser scanning confocal microscopy (LSCM) and Western blot analysis were employed to probe for ERp29 protein in BALB/c mouse epididymal and acrosome-reacted spermatozoa. We prepared rabbit polyclonal antibodies against mouse recombinant ERp29 (rERp29) to characterize: 1) fertilization rate (FR); 2) fertilization index (FI); 3) sperm motility and 4) acrosome reaction (AR).ResultsConfocal microscopy indicated that ERp29 was partially localized at the sperm head of the epididymal caput as well as over the whole head and part of the principal piece of the tail region from the epididymal cauda. However, when the acrosome reacted, ERp29 remained in the equatorial and post-acrosomal regions of the sperm head, which is the initial site of sperm-oocyte membrane fusion. Such localization changes were confirmed based on the results of Western blot analysis. Furthermore, the antibodies against mouse rERp29 inhibited the spermatozoa from penetrating into the zona pellucida (ZP)-free oocytes. The functional blocking antibodies reduced both mouse sperm-oocyte FR and FI at concentrations of 100 and 200 micro g/ml compared with pre-immunized rabbit IgG or with anti-mouse recombinant bactericidal/permeability-increasing protein (BPI, a sperm surface protein unrelated to sperm-oocyte fusion) antibodies (100 micro g/ml), but they had no effect on sperm motility and AR.ConclusionThis study demonstrates that ERp29 on mouse spermatozoa membrane changes during epididymal transit and AR. Accordingly, in mice this protein may be one of the important factors involved in sperm fertilization by facilitating sperm-oocyte membrane fusion.
The mammalian epididymis is able to create sequential changes in the composition of luminal fluid throughout its length, wherein spermatozoa undergo morphological, biochemical, and physiological modifications. Subsequently, spermatozoa acquire the ability for fertilization upon reaching the epididymal cauda. In this study, protein variations in Sprague-Dawley rat spermatozoa along the caput and caudal regions of epididymis were investigated by high-resolution two-dimensional gel electrophoresis (2DE) in combination with mass spectrometry. From total protein spots on the 2DE maps, 43 spots were shown to be significantly modified as sperm traverse the epididymis, and seven unambiguous proteins were identified from them. Finally, using indirect immunofluorescence, we demonstrated that localization of one of these seven proteins, the endoplasmic reticulum protein (ERp29) precursor, which was first reported in mammalian spermatozoa, was apparently up-regulated as the sperm underwent epididymal maturation and expressed mainly on caudal sperm. Western blot analysis also revealed that ERp29 precursor, from both whole spermatozoa and membrane proteins, increased significantly as the sperm underwent epididymal maturation. Furthermore, the results from immunofluorescence-stained epididymal frozen sections demonstrated that ERp29 was localized in cytoplasm of epididymal epithelia, and the fluorescence intensity was significantly higher in the caudal epididymis than in the caput. These clues indicated that the ERp29 precursor, perhaps related to secretory protein synthesis and absorbed by spermatozoa, may play a vital role in sperm maturation during the epididymal transit, particularly, in the sperm/organelle membrane. Reproduction (2007) 133 575-584
Fertilization, the recognition and fusion between spermatozoa and oocyte, involves various molecules on the spermatozoa and oocyte membranes. Concanavalin A (ConA)-binding proteins may be one of the molecules involved in mammal spermatozoa fertilization; however, their structure and function remain largely unknown. Here, we initially identified a ConA-binding protein, Zn-α2-glycoprotein (ZAG), involved in regulating the acrosome reaction (AR) of human spermatozoa. ZAG is localized on the pre-equatorial region covering the acrosome, neck and tail (some parts of middle piece and principal piece respectively) regions of the acrosome intact human spermatozoa, and disappears in the acrosomal region of the acrosome-reacted spermatozoa. Polyclonal antibodies against human recombinant ZAG significantly reduced the AR and sperm capability binding to human zona pellucida or penetration into zona-free hamster oocytes. Furthermore, assessment of the signaling pathways regulated by ZAG revealed that ZAG affects sperm AR through both the cAMP/PKA and PKC pathways. These results indicate that ZAG, which is present on the human sperm membrane, plays a critical role in the AR and subsequently, may be involved in sperm fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.