An Adaptive tranSmission mechanism exploiting both interference loCality and the relationship between dEsired sigNal and inTerference (ASCENT) is proposed for uplink transmission in heterogeneous networks. The authors adopt both X channel and Z channel models according to which spatial signal processing is designed. In the X channel, the picocell base station (PBS) exploits information the macrocell base station (MBS) shares to cancel local interference, and cooperatively decodes the data carried by strong interference from a macro-user (MU), which is then fed to the MBS. As a result, a pico-user (PU) can transmit simultaneously with an MU on the same channel. In addition, adaptive reception is employed to achieve good tradeoff between interference suppression and the desired level of signal distortion. For the Z channel, the PU and the PBS adopt signal processing suitable for their own channel state. At a PBS, interference cancellation is adopted to eliminate disturbance from an MU via inter-base station collaboration. ASCENT is also extended to the case of multiple picocells. The authors' simulation results show that in X channel mode, the achievable uplink rate of an MU can be significantly enhanced. In the case of Z channel, the PU's rate is improved while guaranteeing the MU's data rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.