Hybrid multifunctional materials have great potential in a wide variety of applications due to their flexible combination of organic and inorganic components. Introducing chiral organic modules into the metal halide frameworks can effectively generate multifunctional materials, achieving new functionalities with noncentrosymmetric structures. Here, by incorporating (R)-or (S)-piperidine-3-carboxylic acid (R/S-PCA) as the templating cation, we report the synthesis and characterization of three pairs of new 2D chiral hybrid Cu(I) halides, namely, (R/S-PCA)CuBr 2 , (R/S-PCA)CuBr 2 •0.5H 2 O, and (R/S-PCA)CuI 2 . These chiral Cu(I) halides crystallize in the noncentrosymmetric space group C2 and belong to a new structural type similar to layered silicates. The optical absorption edges of these chiral materials can be tuned by changing the halide or upon the absorption of water and range from 2.70 to 3.66 eV. A dynamic conversion between (R/S-PCA)CuBr 2 and (R/S-PCA)CuBr 2 •0.5H 2 O occurs through exposure to moisture or vacuum drying along with changes in the reversible bandgap and photoluminescence. Chiroptical properties such as circular dichroism, circular polarized light emission, and second harmonic generation are investigated. Density functional theory calculations (DFT) show the indirect and direct bandgap natures of these Cu(I) halides and reveal the mechanism for the broadband self-trapped exciton emission at the excited state. The fascinating structural type, chiroptical properties, and reversible hydrochromic behavior of these Cu(I)-based halides make them viable candidates for next-generation multifunctional optoelectronic materials.
Employing external stimuli to manipulate the synergy between magnetic and proton conductivity has stimulated extensive scientific interest due to the potential application in information storage, sensors and fuel cell, etc....
A new centrosymmetric tetranuclear aggregate [Dy4(L)2(OAc)8(CH3OH)2] (1) was assembled using a unique symmetrical Schiff base ligand 1,5-bis(salicylidene)-carbohydrazide (H2L). Magnetic studies reveal ferromagnetic interactions between dysprosium ions and two obvious relaxation processes under zero dc field with effective energy barriers Ueff of 38 K and 223 K, the highest among the reported tetranuclear dysprosium molecular nanomagnets. To obtain further evidence on the origination of the slow magnetic relaxation, a diamagnetic yttrium analogue [Y4(L)2(OAc)8(CH3OH)2] (2) and a diluted sample [(Dy0.06Y0.94)4(L)2(OAc)8(CH3OH)2] (3) were synthesized. Further magnetic studies on the diluted sample combined with theoretical calculations indicate that the two-step magnetic relaxation processes in complex 1 originate from the single-ion magnetic behaviors of dysprosium ions with different coordination environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.