We report a giant strain (0.72 %) with a low degree of hysteresis (ca. 36.2 %) and a giant S max /E max ratio (916 pm V-1 , S max and E max denote the maximum strain and the corresponding electric field, respectively) for lead-free (1-x)(0.8Bi 0.5 Na 0.5 TiO 3-0.2Bi 0.5 K 0.5 TiO 3)-xSr 0.8 Bi 0.1 □ 0.1 Ti 0.8 Zr 0.2 O 2.95 piezoceramics with x = 0.06. The giant strain originates from a reversible transition between the ergodic relaxor and ferroelectric states under applied electric fields. A-site vacancies (V A) and oxygen vacancies (V O), deliberately introduced to the system, induce a randomly distributed local polarization field. The local field induces embryonic polarization domains that have a broad distribution of maturity and thus smears the transition between the ferroelectric and relaxor states. This leads to a narrow hysteresis loop. The poling field required for the relaxor-to-ferroelectric transition is reduced significantly, due to the remanent ferroelectric phase at zero field acting as the seed, and the point defects synergistically facilitating the nucleation and growth of the ferroelectric phase. Our work provides a novel route for designing piezoelectric materials with both a giant strain and a narrow hysteresis for practical actuator applications.
Recently it was found that in the lead-free (1-x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 (BZT-xBCT) system, the highest piezoelectric d33 coefficient appears at the tetragonal (T) – orthorhombic (O) phase boundary rather than the O – rhombohedral (R) phase boundary, but the physical origin of it is still unclear. In this work we construct the phase diagram of the BZT-xBCT system using a generic sixth-order Landau free energy polynomial and calculate the energy barrier (EB) for direct domain switching between two variants of the stable low-symmetry ferroelectric phase. We find that the EB at the T-O phase boundary is lower than that at the O-R phase boundary and EB may serve as a rigorous quantitative measure of the degree of polarization anisotropy through Landau potential. The calculations may shed some light on the physical origin of the highest piezoelectric coefficients as well as the softest elastic compliance at the T-O phase boundary observed in experiments.
BT-13CH exhibits a large electrocaloric effect over a broad temperature range because of multiphase coexistence (MPC) with diffuse phase transition (DPT) character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.