A gene encoding a putative ATP-dependent DNA ligase was identified in the genome of the hyperthermophilic archaeon Sulfolobus shibatae and expressed in Escherichia coli. The 601 amino acid recombinant polypeptide was a monomeric protein capable of strand joining on a singly nicked DNA substrate in the presence of ATP ( K(m)=34 micro mu) and a divalent cation (Mn(2+), Mg(2+), or Ca(2+)). dATP was partially active in supporting ligation catalyzed by the protein, but GTP, CTP, UTP, dGTP, dCTP, dTTP, and NAD(+) were inactive. The cloned Ssh ligase showed an unusual metal cofactor requirement; it was significantly more active in the presence of Mn(2+) than in the presence of Mg(2+) or Ca(2+). Unexpectedly, the native Ssh ligase preferred Mg(2+) and Ca(2+) rather than Mn(2+). Both native and recombinant enzymes displayed optimal nick-joining activity at 60-80 degrees C. Ssh ligase discriminated against substrates containing mismatches on the 3'-side of nick junction and was more tolerant of mismatches at the 5'-end than of those at the penultimate 5'-end. The enzyme showed little activity on a 1-nucleotide gapped substrate. This is the first biochemical study of a DNA ligase from the crenarchaeotal branch of the archaea domain.
SummaryThe heterodimeric primase from the hyperthermophilic archaeon Sulfolobus solfataricus synthesizes long RNA and DNA products in vitro. How primer synthesis by primase is coupled to primer extension by DNA polymerase in this organism is unclear. Here we show that the small subunit of the clamp loader replication factor C (RFC) of S. solfataricus interacted with both the catalytic and non-catalytic subunits of the primase by yeast two-hybrid and coimmunoprecipitation assays. Further, the primase-RFC interaction was also identified in the cell extract of S. solfataricus. Deletion analysis indicated that the small subunit of RFC interacted strongly with the N-terminal domain of the catalytic subunit of the primase. RFC stimulated dinucleotide formation but decreased the amount of primers synthesized by the primase. The inhibition of primer synthesis is consistent with the observation that RFC reduced the affinity of the primase for DNA templates. On the other hand, primase stimulated the ATPase activity of RFC. These findings suggest that the primase-RFC interaction modulates the activities of both enzymes and therefore may be involved in the regulation of primer synthesis and the transfer of primers to DNA polymerase in Archaea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.