Increasing levels of atmospheric nitrogen deposition have greatly affected forest trees. Acer truncatum Bunge has a large distribution in northern China, Korea and Japan and plays an important ecological role in forest ecosystems. We investigated the responses of A. truncatum to a broad range of nitrogen addition regimes with a focus on seedling growth, biomass partitioning, leaf morphology, gas exchange physiology and chlorophyll fluorescence physiology. Moderate nitrogen addition promoted shoot height, stem diameter at ground height, total biomass, size of leaves and chlorophyll fluorescence and gas exchange performance, whereas extreme level of nitrogen addition did not result in such facilitation. Chlorophyll content, pattern of biomass partitioning, ratio of leaf length to width, leaf water content, and specific leaf area did not change among the addition regimes. The critical amount of nitrogen deposition should be defined in the context of a certain time period in a particular region for a certain species at a special developmental stage. The critical amount of N deposition that weakens total biomass facilitation in A. truncatum planted in mixed soil of yellow cinnamon soil and humic soil is approximately 10 g N m −2 y −1 during the first growing season.
White-light-emitting AIE-PNPs were facilely and efficiently prepared through miniemulsion copolymerization by using an AIE luminogen with twisted intramolecular charge transfer properties as a single emitting component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.