NG2 cells (also known as polydendrocytes) are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes and microglia. They can be identified by the expression of the proteoglycan NG2, have a highly branched morphology and are distributed throughout the grey and white matter. They differentiate into oligodendrocytes in vitro and have often been equated with oligodendrocyte precursor cells. However, whether polydendrocytes are multipotential cells that can give rise to neurons and astrocytes as well as oligodendrocytes is now highly debated. Furthermore, electrophysiological studies indicate that polydendrocytes receive synaptic input from neurons, suggesting that they are integrated in the neural network. This Review highlights recent findings and unresolved questions related to the lineage and function of polydendrocytes in the CNS.
*NG2 glia constitute a fourth major glial cell type in the mammalian central nervous system (CNS) that is distinct from other cell types. Although circumstantial evidence suggests that some NG2 glia differentiate into oligodendrocytes, their in vivo fate has not been directly examined. We have used the bacterial artificial chromosome (BAC) modification technique to generate transgenic mice that express DsRed or Cre specifically in NG2-expressing (NG2+) cells. In NG2DsRedBAC transgenic mice, DsRed was expressed specifically in NG2+ cells throughout the postnatal CNS. When the differentiation potential of NG2+ cells in vitro was examined using DsRed+NG2+ cells purified from perinatal transgenic brains, the majority of the cells either remained as NG2+ cells or differentiated into oligodendrocytes. In addition, DsRed+NG2+ cells also differentiated into astrocytes. The in vivo fate of NG2 glia was examined in mice that were double transgenic for NG2creBAC and the Cre reporter Z/EG. In the double transgenic mice, the Cre reporter EGFP was detected in myelinating oligodendrocytes and in a subpopulation of protoplasmic astrocytes in the gray matter of ventrolateral forebrain but not in fibrous astrocytes of white matter. These observations suggest that NG2+ cells are precursors of oligodendrocytes and some protoplasmic astrocytes in gray matter.
SUMMARYNG2-expressing glia (NG2 cells, polydendrocytes) appear in the embryonic brain, expand perinatally, and persist widely throughout the gray and white matter of the mature central nervous system. We have previously reported that NG2 cells generate oligodendrocytes in both gray and white matter and a subset of protoplasmic astrocytes in the gray matter of the ventral forebrain and spinal cord. To investigate the temporal changes in NG2 cell fate, we generated NG2creER TM BAC transgenic mice, in which tamoxifen-inducible Cre is expressed in NG2 cells. Cre induction at embryonic day 16.5, postnatal day (P) 2, P30 and P60 in mice that were double transgenic for NG2creER TM BAC and the Cre reporter revealed that NG2 cells in the postnatal brain generate only NG2 cells or oligodendrocytes, whereas NG2 cells in the embryonic brain generate protoplasmic astrocytes in the gray matter of the ventral forebrain in addition to oligodendrocytes and NG2 cells. Analysis of cell clusters from single NG2 cells revealed that more than 80% of the NG2 cells in the P2 brain give rise to clusters consisting exclusively of oligodendrocytes, whereas the majority of the NG2 cells in the P60 brain generate clusters that contain only NG2 cells or a mixture of oligodendrocytes and NG2 cells. Furthermore, live cell imaging of single NG2 cells from early postnatal brain slices revealed that NG2 cells initially divide symmetrically to produce two daughter NG2 cells and that differentiation into oligodendrocytes occurred after 2-3 days.
NG2 cells represent a unique glial cell population that is distributed widely throughout the developing and adult CNS and is distinct from astrocytes, mature oligodendrocytes and microglia. The ability of NG2 cells to differentiate into myelinating oligodendrocytes has been documented in vivo and in vitro. We reported recently that NG2 cells in the forebrain differentiate into myelinating oligodendrocytes but into a subpopulation of protoplasmic astrocytes (Zhu et al., 2008). However, the in vivo fate of NG2 cells in the spinal cord and cerebellum has remained unknown. To investigate the fate of NG2 cells in caudal central nervous system (CNS) regions in vivo, we examined the phenotype of cells that express EGFP in mice that are double transgenic for NG2CreBAC and the Cre reporter Z/EG. The fate of NG2 cells can be studied in these mice by permanent expression of EGFP in cells that have undergone Cre-mediated recombination in NG2 cells. We find that NG2 cells give rise to oligodendrocytes in both gray and white matter of the spinal cord and cerebellum, and to protoplasmic astrocytes in the gray matter of the spinal cord. However, NG2 cells do not give rise to astrocytes in the white matter of the spinal cord and cerebellum. These observations indicate that NG2 cells serve as precursor cells for oligodendrocytes and a subpopulation of protoplasmic astrocytes throughout the rostrocaudal axis of the CNS.
SUMMARYNG2-expressing cells (NG2 cells or polydendrocytes) generate oligodendrocytes throughout the CNS and a subpopulation of protoplasmic astrocytes in the gray matter of the ventral forebrain. The mechanisms that regulate their oligodendrocyte or astrocyte fate and the degree to which they exhibit lineage plasticity in vivo have remained unclear. The basic helix-loop-helix transcription factor Olig2 is required for oligodendrocyte specification and differentiation. We have found that Olig2 expression is spontaneously downregulated in NG2 cells in the normal embryonic ventral forebrain as they differentiate into astrocytes. To further examine the role of Olig2 in NG2 cell fate determination, we used genetic fate mapping of NG2 cells in constitutive and tamoxifen-inducible Olig2 conditional knockout mice in which Olig2 was deleted specifically in NG2 cells. Constitutive deletion of Olig2 in NG2 cells in the neocortex and corpus callosum but not in ventral forebrain caused them to convert their fate into astrocytes, with a concomitant severe reduction in the number of oligodendrocytes and myelin. Deletion of Olig2 in NG2 cells in perinatal mice also resulted in astrocyte generation from neocortical NG2 cells. These observations indicate that the developmental fate of NG2 cells can be switched by altering a single transcription factor Olig2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.