Broadband low dispersion (BBLD) mirrors are an essential component in femto-second (fs) pulse laser systems. We designed and produced Ta2O5-HfO2/SiO2 composite quarter-wave and non-quarter-wave HfO2/SiO2 BBLD mirrors for the 30fs petawatt laser system. The laser damage properties of the BBLD mirrors were investigated in an uncompressed sub-nanosecond laser pulse. It showed that the Ta2O5-HfO2/SiO2 composite BBLD mirror possessed higher LIDT due to the low electric-field intensity (EFI) in the case of the coating without artificial nodules. Nevertheless, the LIDT of the composite mirror was significantly lower than the non-quarter-wave HfO2/SiO2 mirror when the nodules exist. The EFI simulation and damage morphology of the nodules analysis demonstrated that the nodule leading to the light intensification in the middle of the boundary between the nodular and the surrounding coating, thus the outermost HfO2/SiO2 layers cannot protect the Ta2O5/SiO2 layers, and resulting to the significantly low LIDT. This study shed some light on the development of high-laser-damage BBLD mirrors for pulse compression laser systems.
The thermomechanical property of the hafnium/silica antireflection (AR) coatings on lithium triborate (LBO) crystal was investigated by simulation and experiment. From the analysis of the stress and fracture toughness, it was found that the crack originated due to the high tensile stress in hafnium coating. Then we proposed the approaches of decreasing the deposition temperature and substituting the hafnium layers with alumina to improve the mechanical stability of AR coatings on LBO crystals, and cracks were effectively suppressed. The laser damage threshold of different coatings on LBO crystal was tested, and it illustrated that the alumina/silica coatings possess better laser resistance than hafnium/silica AR coatings deposited in low deposition temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.