Flavonoids are well known as antibacterial agents against a wide range of pathogenic microorganism. With increasing prevalence of untreatable infections induced by antibiotic resistance bacteria, flavonoids have attracted much interest because of the potential to be substitutes for antibiotics. In this review, the structure-relationship of flavonoids as antibacterial agents is summarized, and the recent advancements on the antibacterial mechanisms of flavonoids are also discussed. It is concluded that hydroxyls at special sites on the aromatic rings of flavonoids improve the activity. However, the methylation of the active hydroxyl groups generally decreases the activity. Besides, the lipopholicity of the ring A is vital for the activity of chalcones. The hydrophobic substituents such as prenyl groups, alkylamino chains, alkyl chains, and nitrogen or oxygen containing heterocyclic moieties usually enhance the activity for all the flavonoids. The proposed antibacterial mechanisms of flavonoids are as follows: inhibition of nucleic acid synthesis, inhibition of cytoplasmic membrane function, inhibition of energy metabolism, inhibition of the attachment and biofilm formation, inhibition of the porin on the cell membrane, alteration of the membrane permeability, and attenuation of the pathogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.