Belowground microorganisms are indispensable components for nutrient cycling in desert ecosystems, and understanding how they respond to increased salinity is essential for managing and ameliorating salinization. Our sequence-based data revealed that microbial diversity decreased with increasing salinity, and certain salt-tolerant phylotypes and phenotypes showed a positive relationship with salinity. Using a null modeling approach to estimate microbial community assembly processes along a salinity gradient, we found that salinity imposed a strong selection pressure on the microbial community, which resulted in a dominance of deterministic processes. Studying microbial diversity and community assembly processes along salinity gradients is essential in understanding the fundamental ecological processes in desert ecosystems affected by salinization.
Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.
Aside from enterovirus 71 (EV71) and coxsackie virus A16 (CV-A16), viruses that are known to cause hand-foot-and-mouth disease (HFMD), epidemiological profiles of other enteroviruses that induce HFMD are limited. We collected 9949 laboratory surveillance HFMD cases and 1230 serum samples from infants and children in Shanghai from 2012–2016. Since 2013, CV-A6 has displaced EV71 and CV-A16 to become the predominant serotype. Interestingly, novel epidemiological patterns in EV71 and CV-A16 infections were observed, with one large peak in both 2012 and 2014, followed by two smaller peaks in the respective following years (2013 and 2015). Through sequencing, we found that C4a, B1b, D-Cluster-1 and B constituted the major subgenotypes of EV71, CV-A16, CV-A6 and CV-A10, respectively. Among healthy individuals, 50.49% and 54.23% had positive neutralising antibodies (NtAbs) against EV71 and CV-A16, respectively, indicating that EV71 and CV-A16 silent infections were common. These populations may be an important potential source of infection. The overall seropositive rate of EV71 NtAbs showed a fluctuating, markedly downward trend, indicating the potential risk of a future EV71 epidemic. High CV-A16 NtAb seroprevalence corroborated a documented CV-A16 ‘silent’ epidemic. Children aged 1–5 years had the lowest EV71 NtAb seropositive rate, whereas those aged 1–2 years exhibited the lowest CV-A16 NtAb seropositive rate. This is the first comprehensive investigation of the epidemiology and aetiology, as well as the seroprevalence, of HFMD in Shanghai between 2012 and 2016. This study provides the latest insights into developing a more efficient HMFD vaccination programme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.