We describe an atomic layer etching (ALE) method for copper that involves cyclic exposure to an oxidant and hexafluoroacetylacetone (Hhfac) at 275 • C. The process does not attack dielectrics such as SiO 2 or SiN x , and the surface reactions are kinetically self-limiting to afford a precise etch depth that is spatially uniform. Exposure of a copper surface to molecular oxygen, O 2 , a weak oxidant, forms a ∼0.3 nm thick layer of Cu 2 O, which is removed in a subsequent step by exposure to Hhfac. The etch reaction involves disproportionation of Cu(hfac) intermediates, such that ∼0.09 nm copper is removed per cycle. Exposure of copper to ozone, a stronger oxidant, affords ∼15 nm of CuO; when this oxidized surface is exposed to Hhfac, 8.4 nm of copper is removed per cycle. The etch products, Cu(hfac) 2 and H 2 O, are efficiently pumped away; H 2 O, a poor oxidant, does not attack the bare Cu surface. The roughness of the copper surface increases slowly over successive etch cycles. Thermochemical and bulk etching data indicate that this approach should work for a variety of other metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.