Aiming at the existing artificial potential field method, it still has the defects of easy to fall into local extremum, low success rate and unsatisfactory path when solving the problem of obstacle avoidance path planning of manipulator. An improved method for avoiding obstacle path of manipulator is proposed. First, the manipulator is subjected to invisible obstacle processing to reduce the possibility of its own collision. Second, establish dynamic virtual target points to enhance the predictive ability of the manipulator to the road ahead. Then, the artificial potential field method is used to guide the manipulator movement. When the manipulator is in a local extreme or oscillating, the extreme point jump-out function is used in real time to make the end point of the manipulator produce small displacements and change the action direction to effectively jump out of the dilemma. Finally, the manipulator is controlled to avoid all obstacles and move smoothly to form a spatial optimization path from the start point to the end point. The simulation experiment shows that the proposed method is more suitable for complex working environment and effectively improves the success rate of manipulator path planning, which provides a reference for further developing the application of manipulator in complex environment.
In view of the problem that Bloch Quantum Genetic Algorithm (BQGA) is easy to fall into local optimum, an improved BQGA is proposed. The algorithm can control the step size and the mutation probability in real time in the iterative process, avoiding over the optimal solution and guaranteeing search efficiency. In addition, the improved algorithm further completes the anti-degradation mechanism, which maintains the diversity of the population while preserving the dominant gene to the maximum extent, so that the algorithm is not easy to fall into the local extremum and finally approaches the global optimal solution. The application in the inverse solution of robot kinematics shows that the improved BQGA effectively avoids the premature problem and accelerates the convergence of understanding and the search result is close to the complete solution, which provides a new idea for solving complex nonlinear and multivariate functional equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.