Long noncoding RNAs (lncRNAs) have been illustrated to function as important regulator in carcinogenesis and cancer progression. However, roles of lncRNA miR210HG (miR210 host gene) in osteosarcoma remain unclear. In this study, miR210HG expression level was significantly upregulated in 55 cases of osteosarcoma tissue samples compared to adjacent normal tissue. Besides, the aberrantly enhanced miR210HG expression predicted poor prognosis and lower survival rate. In vitro, miR210HG knockdown suppressed the osteosarcoma cell proliferation, invasion, and epithelial-mesenchymal transition-related marker (N-cadherin and vimentin) expression. In vivo, miR210HG silencing decreased the tumor growth. miR-503 was verified to be the target miRNA of miR210HG using bioinformatics online program and luciferase assay. Furthermore, miR-503 could reverse the role of miR210HG on osteosarcoma cells. In conclusion, our study indicates that miR210HG sponges miR-503 to facilitate osteosarcoma cell invasion and metastasis, revealing the oncogenic role of miR210HG on osteosarcoma cells.
Background Radiotherapy is a conventional and effective local treatment for breast cancer. However, residual or recurrent tumors appears frequently because of radioresistance. Novel predictive marker and the potential therapeutic targets of breast cancer radioresistance needs to be investigated. Methods In this study, we screened all 10 asparagine-linked glycosylation (ALG) members in breast cancer patients’ samples by RT-PCR. Cell viability after irradiation (IR) was determined by CCK-8 assay and flow cytometry. The radiosensitivity of cell lines with different ALG3 expression was determined with the colony formation assay by fitting the multi-target single hit model to the surviving fractions. Cancer stem-like traits were assessed by RT-PCR, Western blot, and flow cytometry. The mechanisms of ALG3 influencing radiosensitivity was detected by Western blot and immunoprecipitation. And the effect of ALG3 on tumor growth after IR was verified in an orthotopic xenograft tumor models. The association of ALG3 with prognosis of breast cancer patients was confirmed by immunohistochemistry. Results ALG3 was the most significantly overexpressing gene among ALG family in radioresistant breast cancer tissue. Overexpression of ALG3 predicted poor clinicopathological characteristics and overall survival (OS), and early local recurrence-free survival (LRFS) in breast cancer patients. Upregulating ALG3 enhanced radioresistance and cancer stemness in vitro and in vivo. Conversely, silencing ALG3 increased the radiosensitivity and repressed cancer stemness in vitro, and more importantly inhibition of ALG3 effectively increased the radiosensitivity of breast cancer cells in vivo. Mechanistically, our results further revealed ALG3 promoted radioresistance and cancer stemness by inducing glycosylation of TGF-β receptor II (TGFBR2). Importantly, both attenuation of glycosylation using tunicamycin and inhibition of TGFBR2 using LY2109761 differentially abrogated the stimulatory effect of ALG3 overexpression on cancer stemness and radioresistance. Finally, our findings showed that radiation played an important role in preventing early recurrence in breast cancer patients with low ALG3 levels, but it had limited efficacy in ALG3-overexpressing breast cancer patients. Conclusion Our results suggest that ALG3 may serve as a potential radiosensitive marker, and an effective target to decrease radioresistance by regulating glycosylation of TGFBR2 in breast cancer. For patients with low ALG3 levels, radiation remains an effective mainstay therapy to prevent early recurrence in breast cancer.
BACKGROUND: The Copper Metabolism MURR1 (COMM) domain family has been reported to play important roles in tumorigenesis. As a prototype for the COMMD family, the expression pattern and biological function of COMMD6 in human tumours remain unknown. METHODS: COMMD6 expression in BALB/c mice and human tissues was examined using real-time PCR and immunohistochemistry. Kaplan-Meier analysis was applied to evaluate the prognosis of COMMD6 in tumours. Competing endogenous RNA (ceRNA) and transcriptional regulation network were constructed based on differentially expressed mRNAs, microRNAs and long non-coding RNAs from the cancer genome atlas database. GO and KEGG enrichment analysis were used to explore the bioinformatics implication. RESULTS: COMMD6 expression was widely observed in BALB/c mice and human tissues, which predicted prognosis of cancer patients. Furthermore, we shed light on the underlying tumour promoting role and mechanism of COMMD6 by constructing a TEX41-miR-340-COMMD6 ceRNA network in head and neck squamous cell carcinoma and miR-218-CDX1-COMMD6 transcriptional network in cholangiocarcinoma. In addition, COMMD6 may modulate the ubiquitination and degradation of NF-κB subunits and regulate ribonucleoprotein and spliceosome complex biogenesis in tumours. CONCLUSIONS: This study may help to elucidate the functions and mechanisms of COMMD6 in human tumours, providing a potential biomarker for tumour prevention and therapy.
Background Irradiation has emerged as a valid tool for nasopharyngeal carcinoma (NPC) in situ treatment; however, NPC derived from tissues treated with irradiation is a main cause cancer-related death. The purpose of this study is to uncover the underlying mechanism regarding tumor growth after irradiation and provided potential therapeutic strategy. Methods Fibroblasts were extracted from fresh NPC tissue and normal nasopharyngeal mucosa. Immunohistochemistry was conducted to measure the expression of α-SMA and FAP. Cytokines were detected by protein array chip and identified by real-time PCR. CCK-8 assay was used to detect cell proliferation. Radiation-resistant (IRR) 5-8F cell line was established and colony assay was performed to evaluate tumor cell growth after irradiation. Signaling pathways were acquired via gene set enrichment analysis (GSEA). Comet assay and γ-H2AX foci assay were used to measure DNA damage level. Protein expression was detected by western blot assay. In vivo experiment was performed subcutaneously. Results We found that radiation-resistant NPC tissues were constantly infiltrated with a greater number of cancer-associated fibroblasts (CAFs) compared to radiosensitive NPC tissues. Further research revealed that CAFs induced the formation of radioresistance and promoted NPC cell survival following irradiation via the IL-8/NF-κB pathway to reduce irradiation-induced DNA damage. Treatment with Tranilast, a CAF inhibitor, restricted the survival of CAF-induced NPC cells and attenuated the of radioresistance properties. Conclusions Together, these data demonstrate that CAFs can promote the survival of irradiated NPC cells via the NF-κB pathway and induce radioresistance that can be interrupted by Tranilast, suggesting the potential value of Tranilast in sensitizing NPC cells to irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.