To accelerate the optimization of selective electron-beam melting (SEBM) processing parameters, two machine learning models, Gaussian process regression, and support vector regression were applied in this work to predict the relative density of Inconel 718 from experimental data. The experimental validation indicated that the trained algorithms can precisely predict the relative density of SEBM samples. Moreover, the effects of different parameters on surface integrity, internal defects, and mechanical properties are discussed in this paper. The Inconel 718 samples with high density (>99.5%) prepared by the same SEBM energy density exhibit different mechanical properties, which are related to the existence of the unmelted powder, Laves phase, and grain structure. Finally, Inconel 718 sample with superior strength and plasticity was fabricated using the optimized processing parameters.
In this work, a method concerning thermal consolidation is proposed to simulate the traditional powder metallurgy process and accomplish the composition screening of powder metallurgy Ni-based superalloys U720Li and RR1000 with rare metal scandium, and superalloys with zero scandium addition, medium scandium addition and high scandium addition are selected. Then effects of scandium on the microstructure and mechanical properties of superalloys are further investigated through fast hot pressed sintering. The results indicate that scandium doping can effectively refine the grain through modifying the size and volume fraction of primary γ’ precipitates at the grain boundary. Meanwhile, scandium can promote the growth and precipitation of secondary γ’ precipitates to some extent. Due to the comprehensive effects of γ’ precipitate modification and grain boundary strengthening, as-sintered U720Li with 0.043 wt.% scandium presents an excellent combination of tensile strength and ductility at ambient and elevated temperature while as-sintered RR1000 with 0.064 wt.% scandium has a good performance at elevated temperature.
In this work, two Ni-based superalloys with 13 wt.% and 35 wt.% Co were prepared via selective laser melting (SLM), and the effects of Co on the microstructure and mechanical properties of the additively manufactured superalloys were investigated. As the Co fraction increased from 13 wt.% to 35 wt.%, the average grain size decreased from 25.69 μm to 17.57 μm, and the size of the nano-phases significantly increased from 80.54 nm to 230 nm. Moreover, the morphology of the γ′ phase changed from that of a cuboid to a sphere, since Co decreased the γ/γ′ lattice mismatch from 0.64% to 0.19%. At room temperature, the yield strength and ultimate tensile strength of the 13Co alloy reached 1379 MPa and 1487.34 MPa, and those of the 35Co alloy were reduced to 1231 MPa and 1350 MPa, while the elongation increased by 52%. The theoretical calculation indicated that the precipitation strengthening derived from the γ′ precipitates made the greatest contribution to the strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.