It is well known that chronic hypertension is associated with increased morbidity and mortality from stroke, coronary artery disease, congestive heart failure, renal disease, and so on.1,2 Arterial tone is persistently increased as a result of malfunction of vessel relaxation in chronic hypertension.2 It is well recognized that arterial tone is regulated by functional balance of the ion channels responsible for cellular depolarization and hyperpolarization. The increased arterial tone is mainly related to depolarization of smooth muscle, which may have resulted from dysfunction of ion channels responsible for cell membrane hyperpolarization. 3 The membrane depolarization activates voltage-dependent l-type Ca 2+ channels, induces an increase in Ca 2+ influx and global intracellular Ca 2+ level, and causes vessel constriction. 4,5 It is believed that large-conductance Ca 2+ -activated K + (BK Ca ) channels play an important role in hyperpolarization of vascular smooth muscle cells (VSMCs).6 BK Ca channels are activated by intracellular local Ca 2+ release events through ryanodine receptors (Ca 2+ sparks) from the sarcoplasmic reticulum and subsequently induce a hyperpolarization that opposes vasoconstriction. 6-8The Ca 2+ sparks are highly localized and short-lived Ca 2+ transients, which is a local Ca 2+ signaling to induce spontaneous transient outward currents (STOCs) in VSMCs and neurons, and mediate different physiological functions. 8,9 In VSMCs, functional coupling of sparks to STOCs hyperpolarizes the membrane potential, which in turn closes the voltage-dependent l-type Ca 2+ channels, decreases global [Ca 2+ ] i , and induces vascular relaxation. 7 Studies from animal models demonstrated that a reduced activity of Ca 2+ sparks and STOCs is involved in an increase of vascular tone in hypertension. [10][11][12] However, little information is available in literature regarding BK Ca channel activity in human arterial cells/tissue from patients with hypertension. The present study was therefore to investigate whether BK Ca activity is altered in VSMCs isolated from mesentery arterial tissues of Han Chinese patients with hypertension using approaches of electrophysiology and molecular biology.Abstract-Chronic hypertension is associated with an impaired vascular relaxation caused by an increased vascular tone; however, the underlying mechanisms are not fully understood in human patients. The present study was to investigate whether large-conductance Ca 2+-and voltage-activated K + (BK Ca ) channels are involved in dysfunctional relaxation of artery in Han Chinese patients with hypertension using the perforated patch clamp, inside-out single-channel, and macromembrane patch recording techniques to determine whole-cell current, spontaneous transient outward current, open probability, and Ca 2+ sensitivity and the reverse transcription polymerase chain reaction and Western blot analysis to examine the gene and protein expression of α-subunit (KCa1.1) and β1-subunit (KCNMB1) of BK Ca channels in isolated human ...
Optogenetic techniques permit studies of excitable tissue through genetically expressed light-gated microbial channels or pumps permitting transmembrane ion movement. Light activation of these proteins modulates cellular excitability with millisecond precision. This review summarizes optogenetic approaches, using examples from neurobiological applications, and then explores their application in cardiac electrophysiology. We review the available opsins, including depolarizing and hyperpolarizing variants, as well as modulators of G-protein coupled intracellular signaling. We discuss the biophysical properties that determine the ability of microbial opsins to evoke reliable, precise stimulation or silencing of electrophysiological activity. We also review spectrally shifted variants offering possibilities for enhanced depth of tissue penetration, combinatorial stimulation for targeting different cell subpopulations, or all-optical read-in and read-out studies. Expression of the chosen optogenetic tool in the cardiac cell of interest then requires, at the single-cell level, introduction of opsin-encoding genes by viral transduction, or coupling “spark cells” to primary cardiomyocytes or a stem-cell derived counterpart. At the system-level, this requires construction of transgenic mice expressing ChR2 in their cardiomyocytes, or in vivo injection (myocardial or systemic) of adenoviral expression systems. Light delivery, by laser or LED, with widespread or multipoint illumination, although relatively straightforward in vitro may be technically challenged by cardiac motion and light-scattering in biological tissue. Physiological read outs from cardiac optogenetic stimulation include single cell patch clamp recordings, multi-unit microarray recordings from cell monolayers or slices, and electrical recordings from isolated Langendorff perfused hearts. Optical readouts of specific cellular events, including ion transients, voltage changes or activity in biochemical signaling cascades, using small detecting molecules or genetically encoded sensors now offer powerful opportunities for all-optical control and monitoring of cellular activity. Use of optogenetics has expanded in cardiac physiology, mainly using optically controlled depolarizing ion channels to control heart rate and for optogenetic defibrillation. ChR2-expressing cardiomyocytes show normal baseline and active excitable membrane and Ca2+ signaling properties and are sensitive even to ~1 ms light pulses. They have been employed in studies of the intrinsic cardiac adrenergic system and of cardiac arrhythmic properties.
Hepatic fibrosis is a chronic liver disease that lacks effective pharmacotherapeutic treatments. As part of the disease's mechanism, hepatic stellate cells (HSCs) are activated by damage-related stimuli to secrete excessive extracellular matrix, leading to collagen deposition. Currently, the drug delivery system that targets HSCs in the treatment of liver fibrosis remains an urgent challenge due to the poor controllability of drug release. Since the level of reactive oxygen species (ROS) increases sharply in activated HSCs (aHSCs), we designed ROS-responsive micelles for the HSC-specific delivery of a traditional Chinese medicine, resveratrol (RES), for treatment of liver fibrosis. The micelles were prepared by the ROS-responsive amphiphilic block copolymer poly(L-methionine-block-N ε -trifluoro-acetyl-L-lysine) (PMK) and a PEG shell modified with a CRGD peptide insertion. The CRGD-targeted and ROS-responsive micelles (CRGD-PMK-MCs) could target aHSCs and control the release of RES under conditions of high intracellular ROS in aHSCs. The CRGD-PMK-MCs treatment specifically enhanced the targeted delivery of RES to aHSCs both in vitro and in vivo. In vitro experiments show that CRGD-PMK-MCs could significantly promote ROS consumption, reduce collagen accumulation, and avert activation of aHSCs. In vivo results demonstrate that CRGD-PMK-MCs could alleviate inflammatory infiltration, prevent fibrosis, and protect hepatocytes from damage in fibrotic mice. In conclusion, CRGD-PMK-MCs show great potential for targeted and ROS-responsive controlled drug release in the aHSCs of liver fibrosis.
We aimed to investigate plasma growth differentiation factor-15 (GDF-15) levels in pediatric pulmonary arterial hypertension secondary to congenital heart disease (PAH-CHD), and assess the association with hemodynamic parameters. Plasma GDF-15 levels were measured in children with PAH-CHD (n = 46) and compared to children with CHD without PAH (n = 39). Normal individuals (n = 30) served as health control group. Plasma GDF-15 levels were significantly elevated in patients with PAH-CHD compared with those with CHD without PAH (median 1415 ng/L, interquartile range [IQR] 926.7-2111.7 ng/L vs. 890.6 ng/L, IQR 394.7-1094.3 ng/L, p < 0.01). Elevated plasma GDF-15 levels were positively related to Functional Class, uric acid, N-terminal pro-B-type natriuretic peptide (NT-proBNP), pulmonary artery systolic pressure, mean pulmonary artery pressure, pulmonary blood flow/systemic blood flow and pulmonary vascular resistance, and a lower mixed venous oxygen saturation (Sv). The area under the curve (AUC) for adding GDF-15 to NT-proBNP was not superior to the AUC of NT-pro BNP alone (AUC difference 0.0295, p = 0.324) (NT-proBNP, AUC 0.823, 95% CI 0.725-0.897; GDF-15 plus NT-proBNP, AUC 0.852, 95% CI 0.759-0.92), whereas it revealed a slightly greater specificity and positive predictive value. The diagnostic power of NT-pro BNP was not inferior to GDF-15 (AUC difference 0.0443, p = 0.43). Plasma GDF-15 levels might be a surrogate marker for pediatric PAH-CHD.
IntroductionThe incidence of central nervous system disease has increased in recent years. However, the transportation of drug is restricted by the blood–brain barrier, contributing to the poor therapeutic effect in the brain. Therefore, the development of a new brain-targeting drug delivery system has become the hotspot of pharmacy.Materials and methodsBorneol, a simple bicyclic monoterpene extracted from Dryobalanops aromatica, can direct drugs to the upper body parts according to the theory of traditional Chinese medicine. Dioleoyl phosphoethanolamine (DOPE) was chemically modified by borneol as one of the lipid materials of solid lipid nanoparticle (SLN) in the present study.ResultsThe borneol-modified chemically solid lipid nanoparticle (BO-SLN/CM), borneol-modified physically solid lipid nanoparticle (BO-SLN/PM), and SLN have similar diameter (of about 87 nm) and morphological characteristics. However, BO-SLN/CM has a lower cytotoxicity, higher cell uptake, and better blood–brain barrier permeability compared with BO-SLN/PM and SLN. BO-SLN/CM has a remarkable targeting function to the brain, while BO-SLN/ PM and SLNs are concentrated at the lung.ConclusionThe present study provides an excellent drug delivery carrier, BO-SLN/CM, having the application potential of targeting to the brain and permeating to the blood–brain barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.