Abstract:Urban flooding occurs frequently in many regions of China. To reduce the losses caused by urban flooding, sponge city (SPC) and low-impact development (LID) have been carried out in many Chinese cities. However, urban flooding is influenced by various factors, such as climate, land cover characteristics and nearby river networks, so it is necessary to evaluate the effectiveness of LID measures. In this study, the Storm Water Management Model (SWMM) was adopted to simulate historical urban storm processes in the mountainous Fragrance Hills region of Beijing, China. Subsequently, numerical simulations were performed to evaluate how various LID measures (concave greenbelt, permeable pavement, bio-retention, vegetative swales, and comprehensive measures) influenced urban runoff reduction. The results showed that the LID measures are effective in controlling the surface runoff of the storm events with return periods shorter than five years, in particular, for one-year events. Furthermore, the effectiveness on traffic congestion mitigation of several LID measures (concave greenbelt, vegetative swales, and comprehensive measures) was evaluated. However, the effective return periods of storm events are shorter than two years if the effectiveness on traffic congestion relief is considered. In all evaluated aspects, comprehensive measures and concave greenbelts are the most effective, and vegetative swale is the least effective. This indicated that LID measures are less effective for removing ponding from most storm events in a mountainous, low-lying and backward pipeline infrastructure region with pressures from interval flooding and urban waterlogging. The engineering measures including water conservancy projects and pipeline infrastructure construction combined with the non-engineering measures were suggested to effectively control severe urban storms.
In several cities, permeable brick pavement (PBP) plays a key role in stormwater management. Although various hydrological models can be used to analyze the mitigation efficiency of PBP on rainfall runoff, the majority do not consider the effect of multi-layered pavement on infiltration in urban areas. Therefore, we developed a coupled model to evaluate the potential effect of PBP in reducing stormwater runoff at a watershed scale. Specifically, we compared the hydrological responses (outflow and overflow) of three different PBP scenarios. The potential effects of PBP on peak flow (PF), total volume (TV), and overflow volume (OV) were investigated for 20 design rainstorms with different return periods and durations. Our results indicate that an increase in PBP ratio reduces both PF (4.2–13.5%) and TV (4.2–10.5%) at the outfall as well as the OV (15.4–30.6%) across networks. The mitigation effect of PBP on OV is linearly correlated to storm return period and duration, but the effects on PF and TV are inversely correlated to storm duration. These results provide insight on the effects of infiltration-based infrastructure on urban flooding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.